A nonparametric estimation procedure for bivariate extreme value copulas

被引:177
作者
Caperaa, P
Fougeres, AL
Genest, C
机构
[1] Département de Mathématiques et de Statistique, Université Lavai
基金
加拿大自然科学与工程研究理事会;
关键词
asymptotic theory; copula; dependence function; extreme value distribution; nonparametric estimation;
D O I
10.1093/biomet/84.3.567
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A bivariate extreme value distribution with fixed marginals is generated by a one-dimensional map called a dependence function. This paper proposes a new nonparametric estimator of this function. Its asymptotic properties are examined, and its small-sample behaviour is compared to that of other rank-based and likelihood-based procedures. The new estimator is shown to be uniformly, strongly convergent and asymptotically unbiased. Through simulations, it is also seen to perform reasonably well against the maximum likelihood estimator based on the correct model and to have smaller L-1, L-2 and L-infinity errors than any existing nonparametric alternative. The n(1/2) consistency of the proposed estimator leads to nonparametric estimation of Tawn's (1988) dependence measure that may be used to test independence in small samples.
引用
收藏
页码:567 / 577
页数:11
相关论文
共 22 条
[1]  
[Anonymous], REAL COMPLEX ANAL
[2]  
Coles S., 1994, APPL STAT-J ROY ST C, V43, P1
[3]  
COLES SG, 1991, J ROY STAT SOC B MET, V53, P377
[4]   Bayesian methods in extreme value modelling: A review and new developments [J].
Coles, SG ;
Powell, EA .
INTERNATIONAL STATISTICAL REVIEW, 1996, 64 (01) :119-136
[5]  
Csorgo M., 1981, Probability and Mathematical Statistics
[6]  
de Haan L, 1985, P 45 SESS INT STAT I
[7]   ON THE LIMITING BEHAVIOR OF THE PICKANDS ESTIMATOR FOR BIVARIATE EXTREME-VALUE DISTRIBUTIONS [J].
DEHEUVELS, P .
STATISTICS & PROBABILITY LETTERS, 1991, 12 (05) :429-439
[8]   INTRINSIC ESTIMATION OF THE DEPENDENCE STRUCTURE FOR BIVARIATE EXTREMES [J].
DEOLIVEIRA, JT .
STATISTICS & PROBABILITY LETTERS, 1989, 8 (03) :213-218
[9]   ASSOCIATION OF RANDOM VARIABLES WITH APPLICATIONS [J].
ESARY, JD ;
PROSCHAN, F ;
WALKUP, DW .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (05) :1466-&
[10]   A SEMIPARAMETRIC ESTIMATION PROCEDURE OF DEPENDENCE PARAMETERS IN MULTIVARIATE FAMILIES OF DISTRIBUTIONS [J].
GENEST, C ;
GHOUDI, K ;
RIVEST, LP .
BIOMETRIKA, 1995, 82 (03) :543-552