Lattice potential energy estimation for complex ionic salts from density measurements

被引:510
作者
Jenkins, HDB [1 ]
Tudela, D
Glasser, L
机构
[1] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
[2] Univ Autonoma Madrid, Dept Quim Inorgan, Madrid 28049, Spain
[3] Univ Witwatersrand, Sch Chem, Mol Sci Inst, ZA-2050 Wits, South Africa
关键词
D O I
10.1021/ic011216k
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
This paper is one of a series exploring simple approaches for the estimation of lattice energy of ionic materials, avoiding elaborate computation. The readily accessible, frequently reported, and easily measurable (requiring only small quantities of inorganic material) property of density, rho(m), is related, as a rectilinear function of the form (rho(m)/M-m)(1/3), to the lattice energy U-POT of ionic materials, where Mm is the chemical formula mass. Dependence on the cube root is particularly advantageous because this considerably lowers the effects of any experimental errors in the density measurement used. The relationship that is developed arises from the dependence (previously reported in Jenkins, H. D. B.; Roobottom, H. K.; Passmore, J.; Glasser, L. Inorg. Chem. 1999, 38, 3609) of lattice energy on the inverse cube root of the molar volume. These latest equations have the form U-POT/kJ mol(-1) = gamma(rho(m)/M-m)(1/3) + delta, where for the simpler salts (i.e., U-POT/kJ mol(-1) < 5000 kJ mol(-1)), gamma and delta are coefficients dependent upon the stoichiometry of the inorganic material, and for materials for which U-POT/kJ mol(-1) > 5000, gamma/kJ mol(-1) CM = 10(-7) A/(2/N-A)(1/3) and delta/kJ mol(-1) = 0 where A is the general electrostatic conversion factor (A = 121.4 U mol(-1)), I is the ionic strength = 1/2Sigman(i)z(i)(2), and N-A is Avogadro's constant.
引用
收藏
页码:2364 / 2367
页数:4
相关论文
共 12 条
[1]   Ab initio simulation of ammonia monohydrate (NH3•H2O) and ammonium hydroxide (NH4OH) [J].
Fortes, AD ;
Brodholt, JP ;
Wood, IG ;
Vocadlo, L ;
Jenkins, HDB .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (15) :7006-7014
[2]   LATTICE ENERGIES OF CRYSTALS WITH MULTIPLE IONS - A GENERALIZED KAPUSTINSKII EQUATION [J].
GLASSER, L .
INORGANIC CHEMISTRY, 1995, 34 (20) :4935-4936
[3]   Lattice energies and unit cell volumes of complex ionic solids [J].
Glasser, L ;
Jenkins, HDB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (04) :632-638
[4]   [N2H5]+2[N4C-N=N-CN4]2-:: A new high-nitrogen high-energetic material [J].
Hammerl, A ;
Klapötke, TM ;
Nöth, H ;
Warchhold, M ;
Holl, G ;
Kaiser, M ;
Ticmanis, U .
INORGANIC CHEMISTRY, 2001, 40 (14) :3570-3575
[5]   ENERGETICS OF CALCIUM DICHLORIDE HYDRATES - CACL2.NH2O (N=0,2,4,6) - TOTAL LATTICE POTENTIAL-ENERGY CALCULATIONS AND THE RELATION BETWEEN THE ELECTROSTATIC AND TOTAL ENERGY OF THE HYDRATES [J].
JENKINS, HDB ;
HIRST, DM ;
LAGADIANOU, E ;
PATEL, M ;
HERZIG, P ;
BROWN, ID .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1985, 81 :1607-1626
[6]   REAPPRAISAL OF THERMOCHEMICAL RADII FOR COMPLEX-IONS [J].
JENKINS, HDB ;
THAKUR, KP .
JOURNAL OF CHEMICAL EDUCATION, 1979, 56 (09) :576-577
[7]   Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii [J].
Jenkins, HDB ;
Roobottom, HK ;
Passmore, J ;
Glasser, L .
INORGANIC CHEMISTRY, 1999, 38 (16) :3609-3620
[8]   LATTICE ENERGY OF IONIC CRYSTALS [J].
KAPUSTINSKII, AF .
QUARTERLY REVIEWS, 1956, 10 (03) :283-294
[9]  
RICHARDS FM, 1995, INT TABLES CRYSTALLO, VC, P141
[10]   Thermochemical radii of complex ions [J].
Roobottom, HK ;
Jenkins, HDB ;
Passmore, J ;
Glasser, L .
JOURNAL OF CHEMICAL EDUCATION, 1999, 76 (11) :1570-1573