Collapse arrest and soliton stabilization in nonlocal nonlinear media

被引:458
作者
Bang, O [1 ]
Krolikowski, W
Wyller, J
Rasmussen, JJ
机构
[1] Tech Univ Denmark, Dept Informat & Math Modelling, DK-2800 Lyngby, Denmark
[2] Australian Natl Univ, Res Sch Phys Sci & Engn, Laser Phys Ctr, Australian Photon Cooperat Res Ctr, Canberra, ACT 0200, Australia
[3] Agr Univ Norway, Dept Math Sci, N-1432 As, Norway
[4] Riso Natl Lab, Opt & Fluid Dynam Dept, DK-4000 Roskilde, Denmark
关键词
D O I
10.1103/PhysRevE.66.046619
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian that nonlocality of the nonlinearity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions. The nonlocal nonlinear response must be symmetric and have a positive definite Fourier spectrum, but can otherwise be of completely arbitrary shape and degree of nonlocality. We use variational techniques to find the soliton solutions and illustrate the stabilizing effect of nonlocality.
引用
收藏
页数:5
相关论文
共 40 条
[1]  
Agrawal G. P., 1995, NONLINEAR FIBER OPTI
[2]   Hamiltonian-versus-energy diagrams in soliton theory [J].
Akhmediev, N ;
Ankiewicz, A ;
Grimshaw, R .
PHYSICAL REVIEW E, 1999, 59 (05) :6088-6096
[3]   SELF-REFRACTION OF NON-LINEAR CAPILLARY-GRAVITY WAVES [J].
BANERJEE, PP ;
KORPEL, A ;
LONNGREN, KE .
PHYSICS OF FLUIDS, 1983, 26 (09) :2393-2398
[4]   SUBCRITICAL LOCALIZATION IN THE DISCRETE NONLINEAR SCHRODINGER-EQUATION WITH ARBITRARY POWER NONLINEARITY [J].
BANG, O ;
RASMUSSEN, JJ ;
CHRISTIANSEN, PL .
NONLINEARITY, 1994, 7 (01) :205-218
[5]   ON LOCALIZATION IN THE DISCRETE NONLINEAR SCHRODINGER-EQUATION [J].
BANG, O ;
RASMUSSEN, JJ ;
CHRISTIANSEN, PL .
PHYSICA D, 1993, 68 (01) :169-173
[6]   TEMPERATURE EFFECTS IN A NONLINEAR MODEL OF MONOLAYER SCHEIBE AGGREGATES [J].
BANG, O ;
CHRISTIANSEN, PL ;
IF, F ;
RASMUSSEN, KO ;
GAIDIDEI, YB .
PHYSICAL REVIEW E, 1994, 49 (05) :4627-4636
[7]   Collapse of incoherent light beams in inertial bulk Kerr media [J].
Bang, O ;
Edmundson, D ;
Królikowski, W .
PHYSICAL REVIEW LETTERS, 1999, 83 (26) :5479-5482
[8]  
BANG O, 1994, APPL ANAL, V57, P3
[9]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[10]   Nonlinear propagation of self-guided ultra-short pulses in ionized gases [J].
Bergé, L ;
Couairon, A .
PHYSICS OF PLASMAS, 2000, 7 (01) :210-230