Role of integrins in endothelial mechanosensing of shear stress

被引:444
作者
Shyy, JY [1 ]
Chien, S
机构
[1] Univ Calif Riverside, Div Biomed Sci, Riverside, CA 92521 USA
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Whitaker Inst Biomed Engn, La Jolla, CA 92093 USA
关键词
shear stress; mechanotransduction; endotheliurn; integrins; Rho;
D O I
10.1161/01.RES.0000038487.19924.18
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The focal pattern of atherosclerotic lesions in arterial vessels suggests that local blood flow patterns are important factors in atherosclerosis. Although disturbed flows in the branches and curved regions are proatherogenic, laminar flows in the straight parts are atheroprotective. Results from in vitro studies on cultured vascular endothelial cells with the use of flow channels suggest that integrins and the associated RhoA small GTPase play important roles in the mechanotransduction mechanism by which shear stress is converted to cascades of molecular signaling to modulate gene expression. By interacting dynamically with extracellular matrix proteins, the mechanosensitive integrins activate RhoA and many signaling molecules in the focal adhesions and cytoplasm. Through such mechanotransduction mechanisms, laminar shear stress upregulates genes involved in antiapoptosis, cell cycle arrest, morphological remodeling, and NO production, thus contributing to the atheroprotective effects. This review summarizes some of the recent findings relevant to these mechanotransduction mechanisms. These studies show that integrins play an important role in mechanosensing in addition to their involvement in cell attachment and migration.
引用
收藏
页码:769 / 775
页数:7
相关论文
共 72 条
[1]   Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21Sdi1/Cip1/Waf1 [J].
Akimoto, S ;
Mitsumata, M ;
Sasaguri, T ;
Yoshida, Y .
CIRCULATION RESEARCH, 2000, 86 (02) :185-190
[2]   Shear stress enhances human endothelial cell wound closure in vitro [J].
Albuquerque, MLC ;
Waters, CM ;
Savla, U ;
Schnaper, HW ;
Flozak, AS .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2000, 279 (01) :H293-H302
[3]   Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism [J].
Arthur, WT ;
Petch, LA ;
Burridge, K .
CURRENT BIOLOGY, 2000, 10 (12) :719-722
[4]   RAFTK/Pyk2-mediated cellular signalling [J].
Avraham, H ;
Park, SY ;
Schinkmann, K ;
Avraham, S .
CELLULAR SIGNALLING, 2000, 12 (03) :123-133
[5]   Fluid shear stress activation of IκB kinase is integrin-dependent [J].
Bhullar, IS ;
Li, YS ;
Miao, H ;
Zandi, E ;
Kim, M ;
Shyy, JYJ ;
Chien, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (46) :30544-30549
[6]   Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells [J].
Birukov, KG ;
Birukova, AA ;
Dudek, SM ;
Verin, AD ;
Crow, MT ;
Zhan, X ;
DePaola, N ;
Garcia, JGN .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2002, 26 (04) :453-464
[7]   Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms -: Role of protein kinase A [J].
Boo, YC ;
Sorescu, G ;
Boyd, N ;
Shiojima, L ;
Walsh, K ;
Du, J ;
Jo, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (05) :3388-3396
[8]   Maintenance of human T cell anergy: Blocking of IL-2 gene transcription by activated Rap1 [J].
Boussiotis, VA ;
Freeman, GJ ;
Berezovskaya, A ;
Barber, DL ;
Nadler, LM .
SCIENCE, 1997, 278 (5335) :124-128
[9]   Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity [J].
Butler, PJ ;
Norwich, G ;
Weinbaum, S ;
Chien, S .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2001, 280 (04) :C962-C969
[10]   DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress [J].
Chen, BPC ;
Li, YS ;
Zhao, YH ;
Chen, KD ;
Li, S ;
Lao, JM ;
Yuan, SL ;
Shyy, JYJ ;
Chien, S .
PHYSIOLOGICAL GENOMICS, 2001, 7 (01) :55-63