Retinoblastoma tumor suppressor and genome stability

被引:43
作者
Zheng, L [1 ]
Lee, WH [1 ]
机构
[1] Univ Texas, Hlth Sci Ctr, Dept Mol Med, Inst Biotechnol, San Antonio, TX 78245 USA
来源
ADVANCES IN CANCER RESEARCH, VOL 85 | 2002年 / 85卷
关键词
D O I
10.1016/S0065-230X(02)85002-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Retinoblastoma gene (Rb) is the prototype of tumor suppressors. Germline mutation in the retinoblastoma gene is susceptible to cancer and reintroduction of wild-type Rb is able to suppress neoplastic phenotypes. The fundamental cellular functions of Rb in the control of cell growth and differentiation are important for its tumor suppression. In general, cancer susceptibility caused by inactivation of a tumor suppressor gene results from genome instability. Accordingly, Rb may function in the maintenance of chromosome stability by influencing mitotic progression, faithful chromosome segregation, and structural remodeling of mitotic chromosomes. Rb is also implicated in the regulation of replication machinery and in the control of cell cycle checkpoints in response to DNA damage, further supporting such a role for Rb. Moreover, the mechanistic basis for Rb-mediated transcriptional repression has revealed its connection to global chromatin remodeling. It is likely that Rb suppresses tumor formation by virtue of its multiple biological activities, and a theme throughout its multiple cellular functions is its central role in controlling activities that involve chromatin remodeling. A model in which Rb controls global genome fluidity is thus proposed. Finally, a recent study provides direct evidence indicating that loss of Rb function leads to genome instability. Therefore, tumor suppressors have a common role in the maintenance of genome stability, and such a role may be pivotal for their functions in tumor suppression. © 2002, Elsevier Science (USA).
引用
收藏
页码:13 / 50
页数:38
相关论文
共 200 条
[1]   CHROMOSOME ASSEMBLY INVITRO - TOPOISOMERASE-II IS REQUIRED FOR CONDENSATION [J].
ADACHI, Y ;
LUKE, M ;
LAEMMLI, UK .
CELL, 1991, 64 (01) :137-148
[2]   Mammalian SMC3 C-terminal and coiled-coil protein domains specifically bind palindromic DNA, do not block DNA ends, and prevent DNA bending [J].
Akhmedov, AT ;
Gross, B ;
Jessberger, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (53) :38216-38224
[3]   Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [J].
Alland, L ;
Muhle, R ;
Hou, H ;
Potes, J ;
Chin, L ;
SchreiberAgus, N ;
DePinho, RA .
NATURE, 1997, 387 (6628) :49-55
[4]   Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element [J].
Austin, RJ ;
Orr-Weaver, TL ;
Bell, SP .
GENES & DEVELOPMENT, 1999, 13 (20) :2639-2649
[5]   SUPPRESSION OF HUMAN COLORECTAL-CARCINOMA CELL-GROWTH BY WILD-TYPE-P53 [J].
BAKER, SJ ;
MARKOWITZ, S ;
FEARON, ER ;
WILLSON, JKV ;
VOGELSTEIN, B .
SCIENCE, 1990, 249 (4971) :912-915
[6]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[7]   p53 in signaling checkpoint arrest or apoptosis [J].
Bates, S ;
Vousden, KH .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1996, 6 (01) :12-18
[8]   The proteasome:: Paradigm of a self-compartmentalizing protease [J].
Baumeister, W ;
Walz, J ;
Zühl, F ;
Seemuller, E .
CELL, 1998, 92 (03) :367-380
[9]  
BERNARD P, 2001, SCIENCE, V11, P11
[10]   Xeroderma pigmentosum and related disorders: Defects in DNA repair and transcription [J].
Berneburg, M ;
Lehmann, AR .
ADVANCES IN GENETICS, VOL 43, 2001, 43 :71-102