The impact of sarcopenia and exercise training on skeletal muscle satellite cells

被引:189
作者
Snijders, Tim [1 ]
Verdijk, Lex B. [1 ]
van Loon, Luc. J. C. [1 ]
机构
[1] Maastricht Univ, Dept Human Movement Sci, Fac Hlth Med & Life Sci, NUTRIM,Med Ctr, NL-6200 MD Maastricht, Netherlands
关键词
Aging; Elderly; Atrophy; Resistance exercise; Muscle hypertrophy; Muscle stem cells; HEPATOCYTE GROWTH-FACTOR; NITRIC-OXIDE SYNTHASE; DIFFERENT FIBER TYPES; OLDER MEN; PROTEIN-SYNTHESIS; MYONUCLEAR NUMBER; RESISTANCE EXERCISE; VASTUS LATERALIS; GENE-EXPRESSION; MYOFIBER HYPERTROPHY;
D O I
10.1016/j.arr.2009.05.003
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
It has been well-established that the age-related loss of muscle mass and strength, or sarcopenia, impairs skeletal muscle function and reduces functional performance at a more advanced age. Skeletal muscle satellite cells (SC), as precursors of new myonuclei, have been suggested to be involved in the development of sarcopenia. In accordance with the type II muscle fiber atrophy observed in the elderly, recent studies report a concomitant fiber type specific reduction in SC content. Resistance type exercise interventions have proven effective to augment skeletal muscle mass and improve muscle function in the elderly. In accordance, recent work shows that resistance type exercise training can augment type II muscle fiber size and reverse the age-related decline in SC content. The latter is supported by an increase in SC activation and proliferation factors that generally appear following exercise training. Present findings strongly suggest that the skeletal muscle SC control myogenesis and have an important, but yet unresolved, function in the loss of muscle mass with aging. This review discusses the contribution of skeletal muscle SC in the age-related loss of muscle mass and the efficacy of exercise training as a means to attenuate and/or reverse this process. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:328 / 338
页数:11
相关论文
共 150 条
[1]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[2]  
Allen DL, 1999, MUSCLE NERVE, V22, P1350, DOI 10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO
[3]  
2-8
[4]   Growth hormone IGF-I and/or resistive exercise maintains myonuclear number in hindlimb unweighted muscles [J].
Allen, DL ;
Linderman, JK ;
Roy, RR ;
Grindeland, RE ;
Mukku, V ;
Edgerton, VR .
JOURNAL OF APPLIED PHYSIOLOGY, 1997, 83 (06) :1857-1861
[5]   Myonuclear number and myosin heavy chain expression in rat soleus single muscle fibers after spaceflight [J].
Allen, DL ;
Yasui, W ;
Tanaka, T ;
Ohira, Y ;
Nagaoka, S ;
Sekiguchi, C ;
Hinds, WE ;
Roy, RR ;
Edgerton, VR .
JOURNAL OF APPLIED PHYSIOLOGY, 1996, 81 (01) :145-151
[6]   PLASTICITY OF MYONUCLEAR NUMBER IN HYPERTROPHIED AND ATROPHIED MAMMALIAN SKELETAL-MUSCLE FIBERS [J].
ALLEN, DL ;
MONKE, SR ;
TALMADGE, RJ ;
ROY, RR ;
EDGERTON, VR .
JOURNAL OF APPLIED PHYSIOLOGY, 1995, 78 (05) :1969-1976
[7]   Lack of myostatin results in excessive muscle growth but impaired force generation [J].
Amthor, Helge ;
Macharia, Raymond ;
Navarrete, Roberto ;
Schuelke, Markus ;
Brown, Susan C. ;
Otto, Anthony ;
Voit, Thomas ;
Muntoni, Francesco ;
Vrbova, Gerta ;
Partridge, Terence ;
Zammit, Peter ;
Bunger, Lutz ;
Patel, Ketan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (06) :1835-1840
[8]   A role for nitric oxide in muscle repair: Nitric oxide-mediated activation of muscle satellite cells [J].
Anderson, JE .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (05) :1859-1874
[9]   Is intracellular brain pH a dependent factor in NOS inhibition during focal cerebral ischemia? [J].
Anderson, RE ;
Meyer, FB .
BRAIN RESEARCH, 2000, 856 (1-2) :220-226
[10]   SATELLITE CELL ACTIVATION IN HUMAN SKELETAL-MUSCLE AFTER TRAINING - EVIDENCE FOR MUSCLE-FIBER NEOFORMATION [J].
APPELL, HJ ;
FORSBERG, S ;
HOLLMANN, W .
INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 1988, 9 (04) :297-299