Exact solution of the asymmetric exclusion model with particles of arbitrary size

被引:44
作者
Alcaraz, FC [1 ]
Bariev, RZ
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
[3] Russian Acad Sci, Kazan Physicotech Inst, Kazan 420029, Russia
关键词
D O I
10.1103/PhysRevE.60.79
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A generalization of the simple exclusion asymmetric model is introduced. In this model an arbitrary mixture of molecules with distinct sizes s = 0,1, 2, ..., in units of lattice space, diffuses asymmetrically on the lattice. A related surface growth model is also presented. Variations of the distribution of the molecules sizes-may change the excluded volume almost continuously. We solve the model exactly through the Bethe ansatz and the dynamical critical exponent z is calculated from the finite-size corrections of the mass gap of the related quantum chain. Our results show that for an arbitrary distribution of molecules, the dynamical critical behavior is on the Kardar-Parizi-Zhang universality. [S1063-651X(99)01607-4].
引用
收藏
页码:79 / 88
页数:10
相关论文
共 21 条
[1]   The free energy singularity of the asymmetric six-vertex model and the excitations of the asymmetric XXZ chain [J].
Albertini, G ;
Dahmen, SR ;
Wehefritz, B .
NUCLEAR PHYSICS B, 1997, 493 (03) :541-570
[2]   REACTION-DIFFUSION PROCESSES AS PHYSICAL REALIZATIONS OF HECKE ALGEBRAS [J].
ALCARAZ, FC ;
RITTENBERG, V .
PHYSICS LETTERS B, 1993, 314 (3-4) :377-380
[3]   SURFACE EXPONENTS OF THE QUANTUM XXZ, ASHKIN-TELLER AND POTTS MODELS [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT ;
BAXTER, RJ ;
QUISPEL, GRW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18) :6397-6409
[4]   CONFORMAL-INVARIANCE, THE XXZ CHAIN AND THE OPERATOR CONTENT OF TWO-DIMENSIONAL CRITICAL SYSTEMS [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT .
ANNALS OF PHYSICS, 1988, 182 (02) :280-343
[5]   REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS [J].
ALCARAZ, FC ;
DROZ, M ;
HENKEL, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1994, 230 (02) :250-302
[6]  
ALCARAZ FC, 1995, PHYS LETT A, V240, P247
[7]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[8]   Correlation functions for a strongly correlated boson system [J].
Bogoliubov, NM ;
Izergin, AG ;
Kitanine, NA .
NUCLEAR PHYSICS B, 1998, 516 (03) :501-528
[9]   On the spectrum of the non-Hermitian phase-difference model [J].
Bogoliubov, NM ;
Nassar, T .
PHYSICS LETTERS A, 1997, 234 (05) :345-350
[10]  
DAHMEN SR, CONDMAT9802152