Exploring the role of alanine in the structure of the Lac repressor tetramerization domain, a ferritin-like Alacoil

被引:12
作者
Solan, A
Ratia, K
Fairman, R
机构
[1] Haverford Coll, Dept Mol Cell & Dev Biol, Haverford, PA 19041 USA
[2] Univ Illinois, Dept Pharmaceut Biotechnol, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
four-chain antiparallel coiled coil; Alacoil; thermodynamic stability; protein structure; circular dichroism;
D O I
10.1006/jmbi.2002.5427
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We are interested in the determinants that specify the structure of antiparallel coiled coils. Antiparallel coiled coils often contain alanine as an important interfacial packing residue; structures containing alanine at certain well-defined positions in the heptad-repeating unit are referred to as Alacoils. Two types have been identified, containing alanine at either the g position of the heptad repeating unit (defined as the d position in the Richardson nomenclature), referred to as a rop-like Alacoil, or the e position (a position in the Richardson nomenclature), referred to as a ferritin-like Alacoil. The Lac repressor tetramerization domain forms an, antiparallel four-chain coiled coil, which falls into the second class of Alacoils based on recent crystal structures. The role of alanine in such structures has not yet been explored experimentally. We test the importance of alanine at the e positions on the oligomeric state and stability of the isolated coiled-coil domain of Lac repressor by testing the effect of mutations at this position. We find that mutation to leucine is tolerated and its moderately stabilizing effect is most likely a consequence of plasticity of this motif. The effects on stability of the mutations to either serine or glutamine can be largely accounted for by helix propensity differences between these residues and alanine. The ability of the helices to adjust to such mutations, while maintaining the basic fold of this coiled coil, was further tested by making the same changes at the more highly exposed g position. Leucine at the g positions also causes an increase in stability, presumably by subtle rearrangement of the helices to allow partial desolvation of this side-chain. (C) 2002 Elsevier Science Ltd.
引用
收藏
页码:601 / 612
页数:12
相关论文
共 28 条
[1]   INTERACTIONS OF COILED COILS IN TRANSCRIPTION FACTORS - WHERE IS THE SPECIFICITY [J].
BAXEVANIS, AD ;
VINSON, CR .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1993, 3 (02) :278-285
[2]   DESIGN OF 2-STRANDED AND 3-STRANDED COILED-COIL PEPTIDES [J].
BETZ, S ;
FAIRMAN, R ;
ONEIL, K ;
LEAR, J ;
DEGRADO, W .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1995, 348 (1323) :81-88
[3]   Thermodynamic analysis of a designed three-stranded coiled coil [J].
Boice, JA ;
Dieckmann, GR ;
DeGrado, WF ;
Fairman, R .
BIOCHEMISTRY, 1996, 35 (46) :14480-14485
[4]   PROTEIN DESIGN - A HIERARCHICAL APPROACH [J].
BRYSON, JW ;
BETZ, SF ;
LU, HS ;
SUICH, DJ ;
ZHOU, HXX ;
ONEIL, KT ;
DEGRADO, WF .
SCIENCE, 1995, 270 (5238) :935-941
[5]   Coiled coils: a highly versatile protein folding motif [J].
Burkhard, P ;
Stetefeld, J ;
Strelkov, SV .
TRENDS IN CELL BIOLOGY, 2001, 11 (02) :82-88
[6]   ALPHA-HELICAL COILED COILS - MORE FACTS AND BETTER PREDICTIONS [J].
COHEN, C ;
PARRY, DAD .
SCIENCE, 1994, 263 (5146) :488-489
[7]   ALPHA-HELICAL COILED COILS AND BUNDLES - HOW TO DESIGN AN ALPHA-HELICAL PROTEIN [J].
COHEN, C ;
PARRY, DAD .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1990, 7 (01) :1-15
[8]   THE PACKING OF ALPHA-HELICES - SIMPLE COILED-COILS [J].
CRICK, FHC .
ACTA CRYSTALLOGRAPHICA, 1953, 6 (8-9) :689-697
[9]   SOLVATION ENERGY IN PROTEIN FOLDING AND BINDING [J].
EISENBERG, D ;
MCLACHLAN, AD .
NATURE, 1986, 319 (6050) :199-203
[10]   CHARACTERIZATION OF A NEW 4-CHAIN COILED-COIL - INFLUENCE OF CHAIN-LENGTH ON STABILITY [J].
FAIRMAN, R ;
CHAO, HG ;
MUELLER, L ;
LAVOIE, TB ;
SHEN, LY ;
NOVOTNY, J ;
MATSUEDA, GR .
PROTEIN SCIENCE, 1995, 4 (08) :1457-1469