Relativistic electrons in the outer radiation belt: Differentiating between acceleration mechanisms

被引:277
作者
Green, JC
Kivelson, MG
机构
[1] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA
[2] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
关键词
geomagnetic storm; phase space density; relativistic electrons;
D O I
10.1029/2003JA010153
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
[1] Many theoretical models have been developed to explain the rapid acceleration to relativistic energies of electrons that form the Earth's radiation belts. However, after decades of research, none of these models has been unambiguously confirmed by comparison to observations. Proposed models can be separated into two types: internal and external source acceleration mechanisms. Internal source acceleration mechanisms accelerate electrons already present in the inner magnetosphere (L < 6.6), while external source acceleration mechanisms transport and accelerate a source population of electrons from the outer to the inner magnetosphere. In principle, the two types of acceleration mechanisms can be differentiated because they imply that different radial gradients of electron phase space density expressed as a function of the three adiabatic invariants will develop. Model predictions can be tested by transforming measured electron flux (given as a function of pitch angle, energy, and position) to phase space density as a function of the three invariants, mu, K, and Phi. The transformation requires adoption of a magnetic field model. Phase space density estimates have, in the past, produced contradictory results because of limited measurements and field model errors. In this study we greatly reduce the uncertainties of previous work and account for the contradictions. We use data principally from the Polar High Sensitivity Telescope energetic detector on the Polar spacecraft and the Tsyganenko and Stern [1996] field model to obtain phase space density. We show how imperfect magnetic field models produce phase space density errors and explore how those errors modify interpretations. On the basis of the analysis we conclude that the data are best explained by models that require acceleration of an internal source of electrons near L* similar to 5. We also suggest that outward radial diffusion from a phase space density peak near L* similar to 5 can explain the observed correspondence between flux enhancements at geostationary orbit and increases in ULF wave power.
引用
收藏
页数:23
相关论文
共 34 条
[1]   Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave [J].
Albert, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A9) :21191-21209
[2]   International geomagnetic reference field: The seventh generation [J].
Barton, CE .
JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY, 1997, 49 (2-3) :123-148
[3]   CEPPAD - COMPREHENSIVE ENERGETIC PARTICLE AND PITCH-ANGLE DISTRIBUTION EXPERIMENT ON POLAR [J].
BLAKE, JB ;
FENNELL, JF ;
FRIESEN, LM ;
JOHNSON, BM ;
KOLASINSKI, WA ;
MABRY, DJ ;
OSBORN, JV ;
PENZIN, SH ;
SCHNAUSS, ER ;
SPENCE, HE ;
BAKER, DN ;
BELIAN, R ;
FRITZ, TA ;
FORD, W ;
LAUBSCHER, B ;
STIGLICH, R ;
BARAZE, RA ;
HILSENRATH, MF ;
IMHOF, WL ;
KILNER, JR ;
MOBILIA, J ;
VOSS, DH ;
KORTH, A ;
GULL, M ;
FISHER, K ;
GRANDE, M ;
HALL, D .
SPACE SCIENCE REVIEWS, 1995, 71 (1-4) :531-562
[4]   Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm [J].
Brautigam, DH ;
Albert, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A1) :291-309
[5]  
Contos A.R., 1997, THESIS BOSTON U BOST
[6]   Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc5 ULF oscillations [J].
Elkington, SR ;
Hudson, MK ;
Chan, AA .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (21) :3273-3276
[7]   Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field [J].
Elkington, SR ;
Hudson, MK ;
Chan, AA .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A3)
[8]   EFFECTS OF TIME-DEPENDENT ELECTRIC FIELDS ON GEOMAGNETICALLY TRAPPED RADIATION [J].
FALTHAMM.CG .
JOURNAL OF GEOPHYSICAL RESEARCH, 1965, 70 (11) :2503-&
[9]  
FALTHAMMAR CG, 1966, J GEOPHYS RES, V71, P1487
[10]   Relativistic electron dynamics in the inner magnetosphere - a review [J].
Friedel, RHW ;
Reeves, GD ;
Obara, T .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2002, 64 (02) :265-282