Defining the active site of yeast Seryl-tRNA synthetase - Mutations in motif 2 loop residues affect tRNA-dependent amino acid recognition

被引:38
作者
Lenhard, B
Filipic, S
Landeka, I
Skrtic, I
Soll, D
WeygandDurasevic, I
机构
[1] UNIV ZAGREB,FAC SCI,DEPT CHEM,ZAGREB 10000,CROATIA
[2] YALE UNIV,DEPT MOL BIOPHYS & BIOCHEM,NEW HAVEN,CT 06520
[3] RUDJER BOSKOVIC INST,ZAGREB 10000,CROATIA
关键词
D O I
10.1074/jbc.272.2.1136
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The active site of class II aminoacyl-tRNA synthetases contains the motif 2 loop, which is involved in binding of ATP, amino acid, and the acceptor end of tRNA. In order to characterize the active site of Saccharomyces cerevisiae seryl-tRNA synthetase (SerRS), we performed in vitro mutagenesis of the portion of the SES1 gene encoding the motif 2 loop, Substitutions of amino acids conserved in the motif 2 loop of seryl-tRNA synthetases from other sources led to loss of complementation of a yeast SES1 null allele strain by the mutant yeast SES1 genes. Steady-state kinetic analyses of the purified mutant SerRS proteins revealed elevated K-m values for serine and ATP, accompanied by decreases in k(cat) (as expected for replacement of residues involved in aminoacyl-adenylate formation). The differences in the affinities for serine and ATP, in the absence and presence of tRNA are consistent with the proposed conformational changes induced by positioning the 3'-end of tRNA into the active site, as observed recently in structural studies of Thermus thermophilus SerRS (Cusack, S., Yaremchuk, A., and Tukalo, M. (1996) EMBO J. 15, 2834-2842). The crystal structure of this moderately homologous prokaryotic counterpart of the yeast enzyme allowed us to produce a model of the yeast SerRS structure and to place the mutations in a structural context, In conjunction with structural data for T. thermophilus SerRS, the kinetic data presented here suggest that yeast seryl-tRNA synthetase displays tRNA-dependent amino acid recognition.
引用
收藏
页码:1136 / 1141
页数:6
相关论文
共 48 条
[1]   ESCHERICHIA-COLI SERYL-TRANSFER-RNA SYNTHETASE RECOGNIZES TRNA(SER) BY ITS CHARACTERISTIC TERTIARY STRUCTURE [J].
ASAHARA, H ;
HIMENO, H ;
TAMURA, K ;
NAMEKI, N ;
HASEGAWA, T ;
SHIMIZU, M .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 236 (03) :738-748
[2]   THE STRUCTURAL BASIS FOR SERYL-ADENYLATE AND AP(4)A SYNTHESIS BY SERYL-TRANSFER-RNA SYNTHETASE [J].
BELRHALI, H ;
YAREMCHUK, A ;
TUKALO, M ;
BERTHETCOLOMINAS, C ;
RASMUSSEN, B ;
BOSECKE, P ;
DIAT, O ;
CUSACK, S .
STRUCTURE, 1995, 3 (04) :341-352
[3]   CRYSTAL-STRUCTURES AT 2.5 ANGSTROM RESOLUTION OF SERYL-TRANSFER-RNA SYNTHETASE COMPLEXED 2 ANALOGS OF SERYL ADENYLATE [J].
BELRHALI, H ;
YAREMCHUK, A ;
TUKALO, M ;
LARSEN, K ;
BERTHETCOLOMINAS, C ;
LEBERMAN, R ;
BEIJER, B ;
SPROAT, B ;
ALSNIELSEN, J ;
GRUBEL, G ;
LEGRAND, JF ;
LEHMANN, M ;
CUSACK, S .
SCIENCE, 1994, 263 (5152) :1432-1436
[4]   THE 2.9 ANGSTROM CRYSTAL-STRUCTURE OF THERMUS-THERMOPHILUS SERYL-TRANSFER-RNA SYNTHETASE COMPLEXED WITH TRNA(SER) [J].
BIOU, V ;
YAREMCHUK, A ;
TUKALO, M ;
CUSACK, S .
SCIENCE, 1994, 263 (5152) :1404-1410
[5]   SERYL-TRANSFER-RNA SYNTHETASE FROM ESCHERICHIA-COLI - IMPLICATION OF ITS N-TERMINAL DOMAIN IN AMINOACYLATION ACTIVITY AND SPECIFICITY [J].
BOREL, F ;
VINCENT, C ;
LEBERMAN, R ;
HARTLEIN, M .
NUCLEIC ACIDS RESEARCH, 1994, 22 (15) :2963-2969
[6]   ROOT OF THE UNIVERSAL TREE OF LIFE BASED ON ANCIENT AMINOACYL-TRANSFER-RNA SYNTHETASE GENE DUPLICATIONS [J].
BROWN, JR ;
DOOLITTLE, WF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (07) :2441-2445
[7]   PURIFICATION AND PHYSICAL CHARACTERIZATION OF TYROSYL RIBONUCLEIC ACID SYNTHETASES FROM ESCHERICHIA COLI AND BACILLUS SUBTILIS [J].
CALENDAR, R ;
BERG, P .
BIOCHEMISTRY, 1966, 5 (05) :1681-&
[8]   THE ACTIVE-SITE OF YEAST ASPARTYL-TRANSFER-RNA SYNTHETASE - STRUCTURAL AND FUNCTIONAL-ASPECTS OF THE AMINOACYLATION REACTION [J].
CAVARELLI, J ;
ERIANI, G ;
REES, B ;
RUFF, M ;
BOEGLIN, M ;
MITSCHLER, A ;
MARTIN, F ;
GANGLOFF, J ;
THIERRY, JC ;
MORAS, D .
EMBO JOURNAL, 1994, 13 (02) :327-337
[9]   YEAST TRANSFER RNA(ASP) RECOGNITION BY ITS COGNATE CLASS-II AMINOACYL-TRANSFER RNA-SYNTHETASE [J].
CAVARELLI, J ;
REES, B ;
RUFF, M ;
THIERRY, JC ;
MORAS, D .
NATURE, 1993, 362 (6416) :181-184
[10]   SEQUENCE, STRUCTURAL AND EVOLUTIONARY RELATIONSHIPS BETWEEN CLASS-2 AMINOACYL-TRANSFER RNA-SYNTHETASES [J].
CUSACK, S ;
HARTLEIN, M ;
LEBERMAN, R .
NUCLEIC ACIDS RESEARCH, 1991, 19 (13) :3489-3498