Identification of optimal measurement sets for complete flux elucidation in metabolic flux analysis experiments

被引:30
作者
Chang, YoungJung [1 ]
Suthers, Patrick F. [1 ]
Maranas, Costas D. [1 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
关键词
metabolic flux analysis (MFA); isotopomers; incidence structure analysis; structural identifiability; integer programming; nonlinear optimization;
D O I
10.1002/bit.21926
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Metabolic flux analysis (MFA) methods use external flux and isotopic measurements to quantify the magnitude of metabolic flows in metabolic networks. A key question in this analysis is choosing a set of measurements that is capable of yielding a unique flux distribution (identifiability). In this article, we introduce an optimization-based framework that uses incidence structure analysis to determine the smallest (or most cost-effective) set of measurements leading to complete flux elucidation. This approach relies on an integer linear programming formulation Opt-Meas that allows for the measurement of external fluxes and the complete (or partial) enumeration of the isotope forms of metabolites without requiring any of these to be chosen in advance. We subsequently query and refine the measurement sets suggested by OptMeas for identifiability and optimality. OptMeas is first tested on small to medium-size demonstration examples. It is subsequently applied to a large-scale E. coli isotopomer mapping model with more than 17,000 isotopomers. A number of additional measurements are identified leading to maximum flux elucidation in an amorphadiene producing E. coli strain.
引用
收藏
页码:1039 / 1049
页数:11
相关论文
共 38 条
[1]   Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
ANALYTICAL CHEMISTRY, 2007, 79 (19) :7554-7559
[2]   Metabolic flux analysis in a nonstationary system:: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol [J].
Antoniewicz, Maciek R. ;
Kraynie, David F. ;
Laffend, Lisa A. ;
Gonzalez-Lergier, Joanna ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (03) :277-292
[3]   Elementary metabolite units (EMU): A novel framework for modeling isotopic distributions [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (01) :68-86
[4]   Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2006, 8 (04) :324-337
[5]   TOWARD A SCIENCE OF METABOLIC ENGINEERING [J].
BAILEY, JE .
SCIENCE, 1991, 252 (5013) :1668-1675
[6]  
Cox D., 2007, IDEALS VARIETIES ALG
[7]  
Drud A. S., 1994, ORSA Journal on Computing, V6, P207, DOI 10.1287/ijoc.6.2.207
[8]   Using isotopomer path tracing to quantify metabolic fluxes in pathway models containing reversible reactions [J].
Forbes, NS ;
Clark, DS ;
Blanch, HW .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 74 (03) :196-211
[9]  
GEORGIOU A, 1989, INT J CONTROL, V49, P1633, DOI 10.1080/00207178908961340
[10]   A three-level problem-centric strategy for selecting NMR precursor labeling and analytes [J].
Ghosh, Soumitra ;
Grossmann, Ignacio E. ;
Ataai, Mohammad M. ;
Domach, Michael M. .
METABOLIC ENGINEERING, 2006, 8 (05) :491-507