Electronic Origin for the Phase Transition from Amorphous LixSi to Crystalline Li15Si4

被引:153
作者
Gu, Meng [1 ]
Wang, Zhiguo [2 ,3 ]
Connell, Justin G. [4 ]
Perea, Daniel E. [1 ]
Lauhon, Lincoln J. [4 ]
Gao, Fei [2 ]
Wang, Chongmin [1 ]
机构
[1] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
[2] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA
[3] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China
[4] Northwestern Univ, Evanston, IL 60208 USA
关键词
Si; lithiation; in situ TEM; EELS; phase transition; electronic structure; LITHIUM-ION BATTERIES; IN-SITU TEM; SILICON NANOWIRES; HIGH-CAPACITY; ELECTROCHEMICAL LITHIATION; STRUCTURAL EVOLUTION; AB-INITIO; ANODES; LI; DIFFUSION;
D O I
10.1021/nn402349j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon has been widely explored as an anode material for lithium ion battery. Upon lithiation, silicon transforms to amorphous LixSi (a-LixSi) via electrochemical-driven solid-state amorphization. With increasing lithium concentration, a-LixSi transforms to crystalline Li15Si4 (c-Li15Si4). The mechanism of this crystallization process is not known. In this paper, we report the fundamental characteristics of the phase transition of alpha-LixSi to c-Li15Si4 using in situ scanning transmission electron microscopy, electron energy loss spectroscopy, and density function theory (DFT) calculation. We find that when the lithium concentration in a-LixSi reaches a critical value of x = 3.75, the a-Li3.75Si spontaneously and congruently transforms to c-Li15Si4 by a process that is solely controlled by the lithium concentration in the a-LixSi, involving neither large-scale atomic migration nor phase separation. DFT calculations Indicate that c-Li15Si4 formation is favored over other possible crystalline phases due to the similarity in electronic structure with a-Li3.75Si.
引用
收藏
页码:6303 / 6309
页数:7
相关论文
共 55 条
[1]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[2]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Porous Si anode materials for lithium rechargeable batteries [J].
Cho, Jaephil .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (20) :4009-4014
[5]   Real-Time Measurement of Stress and Damage Evolution during Initial Lithiation of Crystalline Silicon [J].
Chon, M. J. ;
Sethuraman, V. A. ;
McCormick, A. ;
Srinivasan, V. ;
Guduru, P. R. .
PHYSICAL REVIEW LETTERS, 2011, 107 (04)
[6]   A Comparative First-Principles Study of the Structure, Energetics, and Properties of Li-M (M = Si, Ge, Sn) Alloys [J].
Chou, Chia-Yun ;
Kim, Hyunwoo ;
Hwang, Gyeong S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40) :20018-20026
[7]   Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries [J].
Cui, Li-Feng ;
Hu, Liangbing ;
Choi, Jang Wook ;
Cui, Yi .
ACS NANO, 2010, 4 (07) :3671-3678
[8]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[9]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[10]   Diffusion Induced Stresses and Strain Energy in a Phase-Transforming Spherical Electrode Particle [J].
Deshpande, Rutooj ;
Cheng, Yang-Tse ;
Verbrugge, Mark W. ;
Timmons, Adam .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (06) :A718-A724