Glia: The many ways to modulate synaptic plasticity

被引:184
作者
Achour, S. Ben [1 ]
Pascual, O. [1 ]
机构
[1] Ecole Normale Super, INSERM, U789, F-75005 Paris, France
关键词
Astrocyte; Microglia; Long-term potentiation; Long-term depression; Synaptic scaling; Gliotransmitters; LONG-TERM POTENTIATION; EXCITATORY AMINO-ACIDS; D-SERINE; NITRIC-OXIDE; GLUTAMATE RELEASE; EXTRACELLULAR ATP; ASTROCYTES; MICROGLIA; CALCIUM; CELLS;
D O I
10.1016/j.neuint.2010.02.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Synaptic plasticity consists in a change in synaptic strength that is believed to be the basis of learning and memory. Synaptic plasticity has been for a very long period of time a hallmark of neurons. Recent advances in physiology of glial cells indicate that astrocyte and microglia possess all the features to participate and modulate the various form of synaptic plasticity. Indeed beside their respective supportive and immune functions an increasing number of study demonstrate that astrocytes and microglia express receptors for most neurotransmitters and release neuroactive substances that have been shown to modulate neuronal activity and synaptic plasticity. Because glial cells are all around synapses and release a wide variety of neuroactive molecule during physiological and pathological conditions, glial cells have been reported to modulate synaptic plasticity in many different ways. From change in synaptic coverage, to release of chemokines and cytokines up to dedicated "glio" transmitters release, glia were reported to affect synaptic scaling, homeostatic plasticity, metaplasticity, long-term potentiation and long-term depression. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:440 / 445
页数:6
相关论文
共 104 条
[1]   What is the role of astrocyte calcium in neurophysiology? [J].
Agulhon, Cendra ;
Petravicz, Jeremy ;
McMullen, Allison B. ;
Sweger, Elizabeth J. ;
Minton, Suzanne K. ;
Taves, Sarah R. ;
Casper, Kristen B. ;
Fiacco, Todd A. ;
McCarthy, Ken D. .
NEURON, 2008, 59 (06) :932-946
[2]   NEUROSCIENCE Glia - more than just brain glue [J].
Allen, Nicola J. ;
Barres, Ben A. .
NATURE, 2009, 457 (7230) :675-677
[3]   Glial cells express multiple ATP binding cassette proteins which are involved in ATP release [J].
Ballerini, P ;
Di Iorio, P ;
Ciccarelli, R ;
Nargi, E ;
D'Alimonte, I ;
Traversa, U ;
Rathbone, MP ;
Caciagli, F .
NEUROREPORT, 2002, 13 (14) :1789-1792
[4]  
BARGER SW, 1992, J BIOL CHEM, V267, P9689
[5]   Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function [J].
Barger, SW ;
Basile, AS .
JOURNAL OF NEUROCHEMISTRY, 2001, 76 (03) :846-854
[6]   Control of synaptic strength by glial TNFα [J].
Beattie, EC ;
Stellwagen, D ;
Morishita, W ;
Bresnahan, JC ;
Ha, BK ;
Von Zastrow, M ;
Beattie, MS ;
Malenka, RC .
SCIENCE, 2002, 295 (5563) :2282-2285
[7]   Glutamate transporter currents in Bergmann glial cells follow the time course of extrasynaptic glutamate [J].
Bergles, DE ;
Dzubay, JA ;
Jahr, CE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14821-14825
[8]   Prostaglandins stimulate calcium-dependent glutamate release in astrocytes [J].
Bezzi, P ;
Carmignoto, G ;
Pasti, L ;
Vesce, S ;
Rossi, D ;
Rizzini, BL ;
Pozzan, T ;
Volterra, A .
NATURE, 1998, 391 (6664) :281-285
[9]   Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains [J].
Bushong, EA ;
Martone, ME ;
Jones, YZ ;
Ellisman, MH .
JOURNAL OF NEUROSCIENCE, 2002, 22 (01) :183-192
[10]   Ca2+ and synaptic plasticity [J].
Cavazzini, M ;
Bliss, T ;
Emptage, N .
CELL CALCIUM, 2005, 38 (3-4) :355-367