Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs

被引:301
作者
Molnár, A
Csorba, T
Lakatos, L
Várallyay, É
Lacomme, C
Burgyán, J
机构
[1] Agr Biotechnol Ctr, Inst Plant Biol, H-2101 Godollo, Hungary
[2] Scottish Crop Res Inst, Dundee DD2 5DA, Scotland
关键词
D O I
10.1128/JVI.79.12.7812-7818.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
RNA silencing is conserved in a broad range of eukaryotes and includes the phenomena of RNA interference in animals and posttranscriptional gene silencing (PTGS) in plants. In plants, PTGS acts as an antiviral system; a successful virus infection requires suppression or evasion of the induced silencing response. Small interfering RNAs (siRNAs) accumulate in plants infected with positive-strand RNA viruses and provide specificity to this RNA-mediated defense. We present here the results of a survey of virus-specific siRNAs characterized by a sequence analysis of siRNAs from plants infected with Cymbidium ringspot tombusvirus (CymRSV). CymRSV ARNA sequences have a nonrandom distribution along the length of the viral genome, suggesting that there are hot spots for virus-derived siRNA generation. CymRSV siRNAs bound to the CymRSV p19 suppressor protein have the same asymmetry in strand polarity as the sequenced siRNAs and are imperfect double-stranded RNA duplexes. Moreover, an analysis of siRNAs derived from two other nonrelated positive-strand RNA viruses showed that they displayed the same asymmetry as CymRSV siRNAs. Finally, we show that Tobacco mosaic virus (TMV) carrying a short inverted repeat of the phytoene desaturase (PDS) gene triggered more accumulation of PDS siRNAs than the corresponding antisense PDS sequence. Taken together, these results suggest that virus-derived siRNAs originate predominantly by direct DICER cleavage of imperfect duplexes in the most folded regions of the positive strand of the viral RNA.
引用
收藏
页码:7812 / 7818
页数:7
相关论文
共 60 条
[1]   RNA-dependent RNA polymerases, viruses, and RNA silencing [J].
Ahlquist, P .
SCIENCE, 2002, 296 (5571) :1270-1273
[2]   MicroRNAs and other tiny endogenous RNAs in C-elegans [J].
Ambros, V ;
Lee, RC ;
Lavanway, A ;
Williams, PT ;
Jewell, D .
CURRENT BIOLOGY, 2003, 13 (10) :807-818
[3]  
AUKERMAN MJ, 2003, PLANT CELL, V10, P10
[4]   MicroRNAs: At the root of plant development? [J].
Bartel, B ;
Bartel, DP .
PLANT PHYSIOLOGY, 2003, 132 (02) :709-717
[5]   RNA silencing in plants [J].
Baulcombe, D .
NATURE, 2004, 431 (7006) :356-363
[6]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[7]   Role of microRNAs in plant and animal development [J].
Carrington, JC ;
Ambros, V .
SCIENCE, 2003, 301 (5631) :336-338
[8]   Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step [J].
Chapman, EJ ;
Prokhnevsky, AI ;
Gopinath, K ;
Dolja, VV ;
Carrington, JC .
GENES & DEVELOPMENT, 2004, 18 (10) :1179-1186
[9]  
CHAPMAN S, 1992, PLANT J, V2, P549
[10]  
CHEN X, 2003, SCIENCE, V11, P11