The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes

被引:680
作者
Wagberg, Lars [1 ]
Decher, Gero [2 ]
Norgren, Magnus [1 ,3 ]
Lindstroem, Tom [4 ]
Ankerfors, Mikael [4 ]
Axnaes, Karl [1 ]
机构
[1] KTH, S-10044 Stockholm, Sweden
[2] Inst Charles Sadron, CNRS, ULP, F-67083 Strasbourg, France
[3] Mid Sweden Univ, Fibre Sci & Commun Network, Dept Nat Sci, S-85170 Sundsvall, Sweden
[4] STFI Packforsk AB, S-11486 Stockholm, Sweden
关键词
MOLECULAR-DYNAMICS SIMULATIONS; CHARGE-DENSITY; LAYER; ADSORPTION; FILMS; SURFACES; DEPOSITION; GROWTH;
D O I
10.1021/la702481v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new type of nanocellulosic material has been prepared by high-pressure homogenization of carboxymethylated cellulose fibers followed by ultrasonication and centrifugation. This material had a cylindrical cross-section as shown by transmission electron microscopy with a diameter of 5-15 nm and a length of up to 1 mu m. Calculations, using the Poisson-Boltzmann equation, showed that the surface potential was between 200 and 250 mV, depending on the pH, the salt concentration, and the size of the fibrils. They also showed that the carboxyl groups on the surface of the nanofibrils are not fully dissociated until the pH has reached pH = similar to 10 in deionized water. Calculations of the interaction between the fibrils using the Derjaguin-Landau-Verwey-Overbeek theory and assuming a cylindrical geometry indicated that there is a large electrostatic repulsion between these fibrils, provided the carboxyl groups are dissociated. If the pH is too low and/or the salt concentration is too high, there will be a large attraction between the fibrils, leading to a rapid aggregation of the fibrils. It is also possible to form polyelectrolyte multilayers (PEMs) by combining different types of polyelectrolytes and microfibrillated cellulose (MFC). In this study, silicon oxide surfaces were first treated with cationic polyelectrolytes before the surfaces were exposed to MFC. The build-up of the layers was monitored with ellipsometry, and they show that it is possible to form very well-defined layers by combinations of MFC and different types of polyelectrolytes and different ionic strengths of the solutions during the adsorption of the polyelectrolyte. A polyelectrolyte with a three-dimensional structure leads to the build-up of thick layers of MFC, whereas the use of a highly charged linear polyelectrolyte leads to the formation of thinner layers of MFC. An increase in the salt concentration during the adsorption of the polyelectrolyte results in the formation of thicker layers of MFC, indicating that the structure of the adsorbed polyelectrolyte has a large influence on the formation of the MFC layer. The films of polyelectrolytes and MFC were so smooth and well-defined that they showed clearly different interference colors, depending on the film thickness. A comparison between the thickness of the films, as measured with ellipsometry, and the thickness estimated from their colors showed good agreement, assuming that the films consisted mainly of solid cellulose with a refractive index of 1.53. Carboxymethylated MFC is thus a new type of nanomaterial that can be combined with oppositely charged polyelectrolytes to form well-defined layers that may be used to form, for example, new types of sensor materials.
引用
收藏
页码:784 / 795
页数:12
相关论文
共 53 条
[1]   Structure and mechanism of the deposition of multilayers of polyelectrolytes and nanoparticles [J].
Abu-Sharkh, B .
LANGMUIR, 2006, 22 (07) :3028-3034
[2]   Spectroscopic ellipsometry characterisation and estimation of the Hamaker constant of cellulose [J].
Bergström, L ;
Stemme, S ;
Dahlfors, T ;
Arwin, H ;
Ödberg, L .
CELLULOSE, 1999, 6 (01) :1-+
[3]  
Bertrand P, 2000, MACROMOL RAPID COMM, V21, P319, DOI 10.1002/(SICI)1521-3927(20000401)21:7<319::AID-MARC319>3.0.CO
[4]  
2-7
[5]   DETERMINATION OF THE CHARGE DENSITY OF SILICA SOLS [J].
BOLT, GH .
JOURNAL OF PHYSICAL CHEMISTRY, 1957, 61 (09) :1166-1169
[6]   Interactions between silica surfaces coated by polyelectrolyte multilayers in aqueous environment: comparison between precursor and multilayer regime [J].
Bosio, V ;
Dubreuil, F ;
Bogdanovic, G ;
Fery, A .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2004, 243 (1-3) :147-155
[7]   Production of hollow microspheres from nanostructured composite particles [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
CHEMISTRY OF MATERIALS, 1999, 11 (11) :3309-3314
[8]   Formation of polyelectrolyte multilayers [J].
Castelnovo, M ;
Joanny, JF .
LANGMUIR, 2000, 16 (19) :7524-7532
[9]   Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose [J].
Cranston, Emily D. ;
Gray, Derek G. .
BIOMACROMOLECULES, 2006, 7 (09) :2522-2530
[10]   BUILDUP OF ULTRATHIN MULTILAYER FILMS BY A SELF-ASSEMBLY PROCESS .3. CONSECUTIVELY ALTERNATING ADSORPTION OF ANIONIC AND CATIONIC POLYELECTROLYTES ON CHARGED SURFACES [J].
DECHER, G ;
HONG, JD ;
SCHMITT, J .
THIN SOLID FILMS, 1992, 210 (1-2) :831-835