On the statistical mechanics of self-organized profiles

被引:15
作者
Medvedev, MV
Diamond, PH
Carreras, BA
机构
[1] OAK RIDGE NATL LAB, OAK RIDGE, TN 37831 USA
[2] RUSSIAN RES CTR KURCHATOV INST, INST NUCL FUS, MOSCOW 123182, RUSSIA
[3] GEN ATOM CO, SAN DIEGO, CA 92122 USA
关键词
D O I
10.1063/1.871508
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The radial structure of tokamak profiles determined by anomalous transport is elucidated by studying the statistical mechanics of a sand pile automaton for which the toppling conditions depend on local gradient, alone. In this representation, the sand pile dynamics is Markovian, and spatial profiles may be obtained from calculated expectation values of the local gradient. The Markovian structure of the dynamics is exploited to analytically derive a local gradient probability distribution function from a generalized kinetic equation. for homogeneous, weak noise, the calculated expectation value of the gradient is well below the marginally stable state. In the over-driven limit (i.e., strong homogeneous noise), a region of super-critical gradient is shown to form near the bottom of the pile. For the case of localized noise, the mean self-organized profile is always sub-critical. These results are consistent with numerical studies of simple automata. Their relevance to and implications for tokamak confinement are discussed. (C) 1996 American Institute of Physics.
引用
收藏
页码:3745 / 3753
页数:9
相关论文
共 21 条
[1]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[2]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[3]  
Biskamp D., 1986, Comments on Plasma Physics and Controlled Fusion, V10, P165
[4]   A model realization of self-organized criticality for plasma confinement [J].
Carreras, BA ;
Newman, D ;
Lynch, VE ;
Diamond, PH .
PHYSICS OF PLASMAS, 1996, 3 (08) :2903-2911
[5]   FINITE-LARMOR-RADIUS MODIFICATION OF THE MERCIER CRITERION [J].
CONNOR, JW ;
TANG, WM ;
ALLEN, L .
NUCLEAR FUSION, 1984, 24 (08) :1023-1027
[6]  
Coppi B., 1980, Comments on Plasma Physics and Controlled Fusion, V5, P261
[7]   EXACTLY SOLVED MODEL OF SELF-ORGANIZED CRITICAL PHENOMENA [J].
DHAR, D ;
RAMASWAMY, R .
PHYSICAL REVIEW LETTERS, 1989, 63 (16) :1659-1662
[8]   SELF-ORGANIZED CRITICAL STATE OF SANDPILE AUTOMATON MODELS [J].
DHAR, D .
PHYSICAL REVIEW LETTERS, 1990, 64 (14) :1613-1616
[9]   ON THE DYNAMICS OF TURBULENT TRANSPORT NEAR MARGINAL STABILITY [J].
DIAMOND, PH ;
HAHM, TS .
PHYSICS OF PLASMAS, 1995, 2 (10) :3640-3649
[10]   H-MODE OF THE W 7-AS STELLARATOR [J].
ERCKMANN, V ;
WAGNER, F ;
BALDZUHN, J ;
BRAKEL, R ;
BURHENN, R ;
GASPARINO, U ;
GRIGULL, P ;
HARTFUSS, HJ ;
HOFMANN, JV ;
JAENICKE, R ;
NIEDERMEYER, H ;
OHLENDORF, W ;
RUDYJ, A ;
WELLER, A ;
BOGDANOV, SD ;
BOMBA, B ;
BORSCHEGOVSKY, AA ;
CATTANEI, G ;
DODHY, A ;
DORST, D ;
ELSNER, A ;
ENDLER, M ;
GEIST, T ;
GIANNONE, L ;
HACKER, H ;
HEINRICH, O ;
HERRE, G ;
HILDEBRANDT, D ;
HIZNYAK, VI ;
ILIN, VI ;
KASPAREK, W ;
KARGER, F ;
KICK, M ;
KUBO, S ;
KUFTIN, AN ;
KURBATOV, VI ;
LAZAROS, A ;
MALYGIN, SA ;
MALYGIN, VI ;
MCCORMICK, K ;
MULLER, GA ;
ORLOV, VB ;
PECH, P ;
RINGLER, H ;
ROI, IN ;
SARDEI, F ;
SATTLER, S ;
SCHNEIDER, F ;
SCHNEIDER, U ;
SCHULLER, PG .
PHYSICAL REVIEW LETTERS, 1993, 70 (14) :2086-2089