Analysis of ftsQ mutant alleles in Escherichia coli:: Complementation, septal localization, and recruitment of downstream cell division proteins

被引:43
作者
Chen, JC [1 ]
Minev, M [1 ]
Beckwith, J [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Microbiol & Mol Genet, Boston, MA 02115 USA
关键词
D O I
10.1128/JB.184.3.695-705.2002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
FtsQ, a 276-amino-acid, bitopic membrane protein, is one of the nine proteins known to be essential for cell division in gram-negative bacterium Escherichia coli. To define residues in FtsQ critical for function, we performed random mutagenesis on the ftsQ gene and identified four alleles (ftsQ2,ftsQ6,ftsQ15, and ftsQ65) that fail to complement the ftsQ1(Ts) mutation at the restrictive temperature. Two of the mutant proteins, FtsQ6 and FtsQ15, are functional at lower temperatures but are unable to localize to the division site unless wild-type FtsQ is depleted, suggesting that they compete poorly with the wild-type protein for septal targeting. The other two mutants, FtsQ2 and FtsQ65, are nonfunctional at all temperatures tested and have dominant-negative effects when expressed irk an ftsQ1 (Ts) strain at the permissive temperature. FtsQ2 and FtsQ65 localize to the division site in the presence or absence of endogenous FtsQ, but they cannot recruit downstream cell division proteins, such as FtsL, to the septum. These results suggest that FtsQ2 and FtsQ65 compete efficiently for septal targeting but fail to promote the further assembly of the cell division machinery. Thus, we have separated the localization ability of FtsQ from its other functions, including recruitment of downstream cell division proteins, and are beginning to define regions of the protein responsible for these distinct capabilities.
引用
收藏
页码:695 / 705
页数:11
相关论文
共 40 条
[1]   The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate [J].
Adam, M ;
Fraipont, C ;
Rhazi, N ;
NguyenDisteche, M ;
Lakaye, B ;
Frere, JM ;
Devreese, B ;
VanBeeumen, J ;
vanHeijenoort, Y ;
vanHeijenoort, J ;
Ghuysen, JM .
JOURNAL OF BACTERIOLOGY, 1997, 179 (19) :6005-6009
[2]   FtsN, a late recruit to the septum in Escherichia coli [J].
Addinall, SG ;
Cao, C ;
Lutkenhaus, J .
MOLECULAR MICROBIOLOGY, 1997, 25 (02) :303-309
[3]   MEMBRANE TOPOLOGY OF PENICILLIN-BINDING PROTEIN-3 OF ESCHERICHIA-COLI [J].
BOWLER, LD ;
SPRATT, BG .
MOLECULAR MICROBIOLOGY, 1989, 3 (09) :1277-1286
[4]   Towards single-copy gene expression systems making gene cloning physiologically relevant:: Lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system [J].
Boyd, D ;
Weiss, DS ;
Chen, JC ;
Beckwith, J .
JOURNAL OF BACTERIOLOGY, 2000, 182 (03) :842-847
[5]  
Buddelmeijer N, 1998, J BACTERIOL, V180, P6107
[6]  
BUDDELMEIJER N, 1997, THESIS U AMSTERDAM A
[7]   THE FTSQ PROTEIN OF ESCHERICHIA-COLI - MEMBRANE TOPOLOGY, ABUNDANCE, AND CELL-DIVISION PHENOTYPES DUE TO OVERPRODUCTION AND INSERTION MUTATIONS [J].
CARSON, MJ ;
BARONDESS, J ;
BECKWITH, J .
JOURNAL OF BACTERIOLOGY, 1991, 173 (07) :2187-2195
[8]   Septal localization of FtsQ, an essential cell division protein in Escherichia coli [J].
Chen, JC ;
Weiss, DS ;
Ghigo, JM ;
Beckwith, J .
JOURNAL OF BACTERIOLOGY, 1999, 181 (02) :521-530
[9]   FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division [J].
Chen, JC ;
Beckwith, J .
MOLECULAR MICROBIOLOGY, 2001, 42 (02) :395-413
[10]  
CHEN JC, 2001, THESIS HARVARD U CAM