Repression of cap-dependent translation attenuates the transformed phenotype in non-small cell lung cancer both in vitro and in vivo

被引:48
作者
Jacobson, BA
Alter, MD
Kratzke, MG
Frizelle, SP
Zhang, Y
Peterson, MS
Avdulov, S
Mohorn, RP
Whitson, BA
Bitterman, PB
Polunovsky, VA
Kratzke, RA
机构
[1] Univ Minnesota, Sch Med, Dept Med, Div Heme Onc Transplant, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Ctr Canc, Dept Surg, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Ctr Canc, Minneapolis Vet Affairs Med Ctr, Res Serv, Minneapolis, MN 55455 USA
[4] Univ Minnesota, Ctr Canc, Biostat Core, Minneapolis, MN 55455 USA
关键词
D O I
10.1158/0008-5472.CAN-05-2879
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Aberrant hyperactivation of the cap-dependent protein synthesis apparatus has been documented in a wide range of solid tumors, including epithelial carcinomas, but causal linkage has only been established in breast carcinoma. In this report, we sought to determine if targeted disruption of deregulated cap-dependent translation abrogates tumorigenicity and enhances cell death in non-small cell lung cancer (NSCLC). NSCLC cell lines were stably transfected with either wild-type 4E-BP1 (RA-4E-BP1) or the dominant-active mutant 4E-BPIA37/A46 (HA-TTAA). Transfected NSCLC cells with enhanced translational repression showed pronounced cell death following treatment with gemcitabine. In addition, transfected HA-TTAA and HA-4E-BP1(wt) proteins suppressed growth in a cloning efficiency assay. NSCLC cells transduced with HA-TTAA also show decreased tumorigenicity in xenograft models. Xenograft tumors expressing HA-TTAA were significantly smaller than control tumors. This work shows that hyperactivation of the translational machinery is necessary for maintenance of the malignant phenotype in NSCLC, identifies the molecular strategy used to activate translation, and supports the development of lung cancer therapies that directly target the cap-dependent translation initiation complex.
引用
收藏
页码:4256 / 4262
页数:7
相关论文
共 42 条
[1]   Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells [J].
Avdulov, S ;
Li, S ;
Michalek, V ;
Burrichter, D ;
Peterson, M ;
Perlman, DM ;
Manivel, JC ;
Sonenberg, N ;
Yee, D ;
Bitterman, PB ;
Polunovsky, VA .
CANCER CELL, 2004, 5 (06) :553-563
[2]   The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation [J].
Beuvink, I ;
Boulay, A ;
Fumagalli, S ;
Zilbermann, F ;
Ruetz, S ;
O'Reilly, T ;
Natt, F ;
Hall, J ;
Lane, HA ;
Thomas, G .
CELL, 2005, 120 (06) :747-759
[3]   A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin [J].
Browne, GJ ;
Proud, CG .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (07) :2986-2997
[4]   Epigenetic inactivation of RASSF14 in lung and breast cancers and malignant phenotype suppression [J].
Burbee, DG ;
Forgacs, E ;
Zöchbauer-Müller, S ;
Shivakumar, L ;
Fong, K ;
Gao, BN ;
Randle, D ;
Kondo, M ;
Virmani, A ;
Bader, S ;
Sekido, Y ;
Latif, F ;
Milchgrub, S ;
Toyooka, S ;
Gazdar, AF ;
Lerman, MI ;
Zabarovsky, E ;
White, M ;
Minna, JD .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2001, 93 (09) :691-699
[5]  
Crew JP, 2000, BRIT J CANCER, V82, P161
[6]   eIF-4E expression and its role in malignancies and metastases [J].
De Benedetti, A ;
Graff, JR .
ONCOGENE, 2004, 23 (18) :3189-3199
[7]   OVEREXPRESSION OF EUKARYOTIC PROTEIN-SYNTHESIS INITIATION FACTOR-4E IN HELA-CELLS RESULTS IN ABERRANT GROWTH AND MORPHOLOGY [J].
DEBENEDETTI, A ;
RHOADS, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (21) :8212-8216
[8]   Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes [J].
Fisher, GH ;
Wellen, SL ;
Klimstra, D ;
Lenczowski, JM ;
Tichelaar, JW ;
Lizak, MJ ;
Whitsett, JA ;
Koretsky, A ;
Varmus, HE .
GENES & DEVELOPMENT, 2001, 15 (24) :3249-3262
[9]   Regulation of translation initiation by FRAP/mTOR [J].
Gingras, AC ;
Raught, B ;
Sonenberg, N .
GENES & DEVELOPMENT, 2001, 15 (07) :807-826
[10]   eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation [J].
Gingras, AC ;
Raught, B ;
Sonenberg, N .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :913-963