Droplet spreading: A Monte Carlo test of Tanner's law

被引:33
作者
Milchev, A
Binder, K
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[2] Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria
关键词
D O I
10.1063/1.1465410
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The spreading of polymer droplets under conditions of complete wetting on an ideally flat and structureless solid substrate has been studied by computer simulation, using a coarse-grained bead-spring model of flexible macromolecules. Evidence is obtained that a power law close to Tanner's law for the growth of the lateral droplet radius {r(t)proportional tot(0.14)} and contact angle {thetaproportional tot(-0.31)} holds on nanoscopic scales. We observe the formation of a precursor film around the spreading droplet and find that the film attains diffusive dynamics at late times. (C) 2002 American Institute of Physics.
引用
收藏
页码:7691 / 7694
页数:4
相关论文
共 39 条
[1]   Diffusive spreading of chainlike molecules on surfaces [J].
AlaNissila, T ;
Herminghaus, S ;
Hjelt, T ;
Leiderer, P .
PHYSICAL REVIEW LETTERS, 1996, 76 (21) :4003-4006
[2]   Experimental study of the spreading of a viscous droplet on a nonviscous liquid [J].
Bacri, L ;
Debregeas, G ;
BrochardWyart, F .
LANGMUIR, 1996, 12 (26) :6708-6711
[3]  
BALL P, 1899, NATURE, V337, P624
[4]  
Baschnagel J, 2000, ADV POLYM SCI, V152, P41
[5]  
Binder, 1995, MONTE CARLO MOL DYNA
[6]  
Binder K, 1997, J POLYM SCI POL PHYS, V35, P1, DOI 10.1002/(SICI)1099-0488(19970115)35:1<1::AID-POLB1>3.0.CO
[7]  
2-#
[8]   The dynamics of spreading at the microscopic scale [J].
Blake, TD ;
Decamps, C ;
De Coninck, J ;
de Ruijter, M ;
Voué, M .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1999, 154 (1-2) :5-11
[9]   Droplet spreading:: a microscopic approach [J].
Blake, TD ;
Clarke, A ;
De Coninck, J ;
de Ruijter, M ;
Voué, M .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1999, 149 (1-3) :123-130
[10]  
BROCHARD F, 1984, J PHYS LETT-PARIS, V45, pL597, DOI 10.1051/jphyslet:019840045012059700