Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1

被引:26
作者
Flynn, C. M. [1 ]
Hunt, K. A. [4 ]
Gralnick, J. A. [1 ,2 ]
Srienc, F. [1 ,3 ]
机构
[1] Univ Minnesota Twin Cities, Inst Biotechnol, St Paul, MN 55108 USA
[2] Univ Minnesota Twin Cities, Dept Microbiol, St Paul, MN 55108 USA
[3] Univ Minnesota Twin Cities, Dept Chem Engn & Mat Sci, St Paul, MN 55108 USA
[4] Montana State Univ, Dept Chem & Biol Engn, Ctr Biofilm Engn, Bozeman, MT 59717 USA
关键词
Elementary mode analysis; Shewanella oneidensis; Central metabolism; Anaerobic; Aerobic; ESCHERICHIA-COLI; ANAEROBIC RESPIRATION; FUMARATE REDUCTASE; PATHWAY ANALYSIS; IDENTIFICATION; MECHANISM; BIOMASS; DESIGN; CELL;
D O I
10.1016/j.biosystems.2011.10.003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A stoichiometric model describing the central metabolism of Shewanella oneidensis MR-1 wild-type and derivative strains was developed and used in elementary mode analysis (EMA). Shewanella oneidensis MR-1 can anaerobically respire a diverse pool of electron acceptors, and may be applied in several biotechnology settings, including bioremediation of toxic metals, electricity generation in microbial fuel cells, and whole-cell biocatalysis. The metabolic model presented here was adapted and verified by comparing the growth phenotypes of 13 single- and 1 double-knockout strains, while considering respiration via aerobic, anaerobic fumarate, and anaerobic metal reduction (Mtr) pathways, and utilizing acetate, n-acetylglucosamine (NAG), or lactate as carbon sources. The gene ppc, which encodes phosphoenolpyruvate carboxylase (Ppc), was determined to be necessary for aerobic growth on NAG and lactate, while not essential for growth on acetate. This suggests that Ppc is the only active anaplerotic enzyme when cultivated on lactate and NAG. The application of regulatory and substrate limitations to EMA has enabled creation of metabolic models that better reflect biological conditions, and significantly reduce the solution space for each condition, facilitating rapid strain optimization. This wild-type model can be easily adapted to include utilization of different carbon sources or secretion of different metabolic products, and allows the prediction of single- and multiple-knockout strains that are expected to operate under defined conditions with increased efficiency when compared to wild type cells. (C) 2011 Published by Elsevier Ireland Ltd.
引用
收藏
页码:120 / 128
页数:9
相关论文
共 41 条
[1]   Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants [J].
Bretschger, Orianna ;
Obraztsova, Anna ;
Sturm, Carter A. ;
Chang, In Seop ;
Gorby, Yuri A. ;
Reed, Samantha B. ;
Culley, David E. ;
Reardon, Catherine L. ;
Barua, Soumitra ;
Romine, Margaret F. ;
Zhou, Jizhong ;
Beliaev, Alexander S. ;
Bouhenni, Rachida ;
Saffarini, Daad ;
Mansfeld, Florian ;
Kim, Byung-Hong ;
Fredrickson, James K. ;
Nealson, Kenneth H. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (21) :7003-7012
[2]   DEMONSTRATION OF SEPARATE GENETIC-LOCI ENCODING DISTINCT MEMBRANE-BOUND RESPIRATORY NADH DEHYDROGENASES IN ESCHERICHIA-COLI [J].
CALHOUN, MW ;
GENNIS, RB .
JOURNAL OF BACTERIOLOGY, 1993, 175 (10) :3013-3019
[3]   Fundamental Escherichia coli biochemical pathways for biomass and energy production:: Creation of overall flux states [J].
Carlson, R ;
Srienc, F .
BIOTECHNOLOGY AND BIOENGINEERING, 2004, 86 (02) :149-162
[4]   Microbial reduction and precipitation of vanadium by Shewanella oneidensis [J].
Carpentier, W ;
Sandra, K ;
De Smet, I ;
Brigé, A ;
De Smet, L ;
Van Beeumen, J .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (06) :3636-3639
[5]   MetaCyc: a multiorganism database of metabolic pathways and enzymes [J].
Caspi, Ron ;
Foerster, Hartmut ;
Fulcher, Carol A. ;
Hopkinson, Rebecca ;
Ingraham, John ;
Kaipa, Pallavi ;
Krummenacker, Markus ;
Paley, Suzanne ;
Pick, John ;
Rhee, Seung Y. ;
Tissier, Christophe ;
Zhang, Peifen ;
Karp, Peter D. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D511-D516
[6]   The Mtr Respiratory Pathway Is Essential for Reducing Flavins and Electrodes in Shewanella oneidensis [J].
Coursolle, Dan ;
Baron, Daniel B. ;
Bond, Daniel R. ;
Gralnick, Jeffrey A. .
JOURNAL OF BACTERIOLOGY, 2010, 192 (02) :467-474
[7]   Optimization of cyanophycin production in recombinant strains of Pseudomonas putida and Ralstonia eutropha employing elementary mode analysis and statistical experimental design [J].
Diniz, SC ;
Voss, I ;
Steinbüchel, A .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 93 (04) :698-717
[8]   Enabling Unbalanced Fermentations by Using Engineered Electrode-Interfaced Bacteria [J].
Flynn, Jeffrey M. ;
Ross, Daniel E. ;
Hunt, Kristopher A. ;
Bond, Daniel R. ;
Gralnick, Jeffrey A. .
MBIO, 2010, 1 (05)
[9]   Characterization of Shewanella oneidensis MtrC:: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors [J].
Hartshorne, Robert S. ;
Jepson, Brian N. ;
Clarke, Tom A. ;
Field, Sarah J. ;
Fredrickson, Jim ;
Zachara, John ;
Shi, Liang ;
Butt, Julea N. ;
Richardson, David J. .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2007, 12 (07) :1083-1094
[10]   Mechanism and Consequences of Anaerobic Respiration of Cobalt by Shewanella oneidensis Strain MR-1 [J].
Hau, Heidi H. ;
Gilbert, Alan ;
Coursolle, Dan ;
Gralnick, Jeffrey A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (22) :6880-6886