Self-locating control of chaotic systems using Newton algorithm

被引:37
作者
Xu, D
Bishop, SR
机构
[1] Ctr. Nonlinear Dynam. its Applic., Civil Engineering Department, University College London, London WC1E 6BT, Gower Street
关键词
D O I
10.1016/0375-9601(95)00886-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An algorithm is introduced, based on the Newton method, to stabilize chaotic systems onto a desired periodic orbit utilizing the feedback of an output sequence on accessible parameters. The method does not necessarily rely on explicit knowledge of the system dynamics and only an approximate location of the desired periodic orbit is required which can subsequently be automatically and accurately detected in the control process. The algorithm is locally stable, has a fast convergence rate, is applicable to arbitrary dimensional systems, and is suitable for experimental situations. In numerical simulations, a pair of periodically forced, coupled Duffing oscillators is investigated, which produce a 4-D system.
引用
收藏
页码:273 / 278
页数:6
相关论文
共 22 条
[1]   CONTROLLING CHAOS IN HIGH DIMENSIONAL SYSTEMS [J].
AUERBACH, D ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1992, 69 (24) :3479-3482
[2]   STABILIZATION AND CHARACTERIZATION OF UNSTABLE STEADY-STATES IN A LASER [J].
BIELAWSKI, S ;
BOUAZAOUI, M ;
DEROZIER, D ;
GLORIEUX, P .
PHYSICAL REVIEW A, 1993, 47 (04) :3276-3279
[3]  
BISHOP SR, 1994, 10TH P INT C SYST EN, V1, P95
[4]   OPTIMAL-CONTROL OF CHAOTIC SYSTEMS [J].
CHEN, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (02) :461-463
[5]   EXPERIMENTAL CONTROL OF CHAOS [J].
DITTO, WL ;
RAUSEO, SN ;
SPANO, ML .
PHYSICAL REVIEW LETTERS, 1990, 65 (26) :3211-3214
[6]   CONTROLLING CHAOS USING TIME-DELAY COORDINATES [J].
DRESSLER, U ;
NITSCHE, G .
PHYSICAL REVIEW LETTERS, 1992, 68 (01) :1-4
[7]   TRACKING UNSTABLE PERIODIC-ORBITS IN A BRONZE RIBBON EXPERIMENT [J].
DRESSLER, U ;
RITZ, T ;
SCHWEINSBERG, ASZ ;
DOERNER, R ;
HUBINGER, B ;
MARTIENSSEN, W .
PHYSICAL REVIEW E, 1995, 51 (03) :1845-1848
[8]   LOCAL-CONTROL OF CHAOTIC MOTION [J].
HUBINGER, B ;
DOERNER, R ;
MARTIENSSEN, W .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 90 (01) :103-106
[9]  
HUBLER A, 1989, HELV PHYS ACTA, V62, P343
[10]  
JACKSON EA, 1990, PHYSICA D, V44, P407, DOI 10.1016/0167-2789(90)90155-I