On quasi-periodic solutions of differential equations with piecewise constant argument

被引:29
作者
Küpper, T
Yuan, R
机构
[1] Univ Cologne, Inst Math, D-50931 Cologne, Germany
[2] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
quasi-periodic solutions; quasi-periodic sequences; piecewise constant argument;
D O I
10.1006/jmaa.2001.7761
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of quasi-periodic solutions to differential equations with piecewise constant argument (EPCA, for short). It is shown that EPCA with periodic perturbations possess a quasi-periodic solution and no periodic solution. The appearance of quasi-periodic rather than periodic solutions is due to the piecewise constant argument. This new phenomenon illustrates a crucial difference between ODE and EPCA. The results are extended to nonlinear equations. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:173 / 193
页数:21
相关论文
共 20 条
[1]   OSCILLATORY AND PERIODIC-SOLUTIONS OF DELAY DIFFERENTIAL-EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT [J].
AFTABIZADEH, AR ;
WIENER, J ;
XU, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (04) :673-679
[2]  
[Anonymous], 1988, APPL ANAL, DOI DOI 10.1080/00036818808839717
[3]  
[Anonymous], ANALYSIS
[4]  
Busenberg S, 1982, NONLINEAR PHENOMENA, P179
[5]   RETARDED DIFFERENTIAL-EQUATIONS WITH PIECEWISE CONSTANT DELAYS [J].
COOKE, KL ;
WIENER, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 99 (01) :265-297
[6]  
COOKE KL, 1991, LECT NOTES MATH, V1475, P1
[7]  
COOKE KL, 1987, B UNIONE MAT ITAL, V1B, P321
[8]  
Corduneanu C., 1968, Almost periodic functions
[9]  
Fink A., 1974, LECT NOTES MATH, V377
[10]   On the application of KAM theory to discontinuous dynamical systems [J].
Kunze, M ;
Kupper, T ;
You, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 139 (01) :1-21