Engineering protein and cell adhesivity using PEO-terminated triblock polymers

被引:181
作者
Liu, VA
Jastromb, WE
Bhatia, SN [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
来源
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH | 2002年 / 60卷 / 01期
关键词
micropatterning; poly(ethylene oxide); poly(ethylene glycol); microfluidics; cell engineering; cell adhesion;
D O I
10.1002/jbm.10005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Previous studies on customizing cell culture environments have utilized a variety of microfabrication-based took to control the spatial localization of adhesive proteins and subsequently mammalian cells. Others have used various methods to immobilize nonadhesive PEO-based polymers on surfaces to inhibit protein absorption and cell adhesion. In this study, we report the application of a well-characterized, commercially available, PEO-terminated triblock polymer (Pluronic(TM) F108) to create micropatterned nonadhesive domains on a variety of biomaterials that deter cell adhesion for up to 4 weeks in culture. The Pluronic can be applied using microfluidic tools or photolithographic techniques, and can be adsorbed to a variety of common surfaces including tissue culture polystyrene, methylated glass, silicone, and polylactic-co-glycolic acid. The effectiveness of the Pluronic in inhibiting cell adhesion in the presence of collagen I is also quantified. Finally, these patterning techniques are generalized to control tissue organization on a variety of common biomaterials. This simple method for micropatterning PEO and, therefore, proteins and cells should prove useful as a tool for biomolecular surface engineering. (C) 2002 John Wiley Sons, Inc.
引用
收藏
页码:126 / 134
页数:9
相关论文
共 52 条
[1]   SURFACE MODIFICATION BY RADIATION-INDUCED GRAFTING OF PEO/PPO/PEO TRIBLOCK COPOLYMERS [J].
AMIJI, M ;
PARK, K .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1993, 155 (01) :251-255
[2]  
BARNES T, 2000, LANGMUIR, P1
[3]  
*BASF, 1990, PLUR TETR SURF
[4]   P(AAm-co-EG) interpenetrating polymer networks grafted to oxide surfaces: Surface characterization, protein adsorption, and cell detachment studies [J].
Bearinger, JP ;
Castner, DG ;
Golledge, SL ;
Rezania, A ;
Hubchak, S ;
Healy, KE .
LANGMUIR, 1997, 13 (19) :5175-5183
[5]   Functional hydrogel structures for autonomous flow control inside microfluidic channels [J].
Beebe, DJ ;
Moore, JS ;
Bauer, JM ;
Yu, Q ;
Liu, RH ;
Devadoss, C ;
Jo, BH .
NATURE, 2000, 404 (6778) :588-+
[6]   Probing heterotypic cell interactions: Hepatocyte function in microfabricated co-cultures [J].
Bhatia, SN ;
Balis, UJ ;
Yarmush, ML ;
Toner, M .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1998, 9 (11) :1137-1160
[7]   Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells [J].
Bhatia, SN ;
Balis, UJ ;
Yarmush, ML ;
Toner, M .
FASEB JOURNAL, 1999, 13 (14) :1883-1900
[8]  
Bhatia SN, 1997, J BIOMED MATER RES, V34, P189, DOI 10.1002/(SICI)1097-4636(199702)34:2<189::AID-JBM8>3.0.CO
[9]  
2-M
[10]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428