Study of the lithium insertion and de-insertion in perovskite praseodymium bismuth lithium titanate

被引:5
作者
García, MF
Fernández, N
Borrego, K
Martínez-Sarrión, ML
Mestres, L
Herraiz, M
机构
[1] Univ Barcelona, Dept Quim Inorgan, Barcelona 08028, Spain
[2] CECMED, Havana, Cuba
[3] Univ La Habana, Dept Quim Inorgan, Havana, Cuba
[4] Univ La Habana, IMRE, Havana, Cuba
关键词
perovskites; insertion reactions; (Pr; Li; Bi)TiO3; intercalation;
D O I
10.1016/j.jeurceramsoc.2004.01.019
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The stoichiometry and lithium-insertion reactions with nBuLi in solid solutions Pr0.5+x-yLi0.5-3xBiyTiO3 have been studied. The results indicate that bismuth affects these processes. Two joins with bismuth and lithium constant, respectively, are studied in the phase diagram. The amount of lithium inserted depends on the number of vacancies and the amount of bismuth in the original sample. The amount of lithium de-inserted depends only on the amount of bismuth. The cell volume increases when the amount of the lithium inserted increases, but anomalous dependence is observed in de-insertion. The presence of bismuth decreases the amount of lithium inserted in the sample, but favors the reversibility of the insertion. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:729 / 734
页数:6
相关论文
共 24 条
[1]   Electrolytic stability limit and rapid lithium insertion in the fast-ion-conducting Li0.29La0.57TiO3 perovskite-type compound [J].
Birke, P ;
Scharner, S ;
Huggins, RA ;
Weppner, W .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :L167-L169
[2]   Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate [J].
Bohnke, O ;
Bohnke, C ;
Fourquet, JL .
SOLID STATE IONICS, 1996, 91 (1-2) :21-31
[3]   Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate [J].
Chen, CH ;
Amine, K .
SOLID STATE IONICS, 2001, 144 (1-2) :51-57
[4]   Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1-xMxO3 (M = Sn, Zr, Mn, Ge) [J].
Chung, HT ;
Kim, JG ;
Kim, HG .
SOLID STATE IONICS, 1998, 107 (1-2) :153-160
[5]   Microstructural study of the Li+ ion substituted perovskites Li0.5-3xNd0.5+xTiO3 [J].
GarciaMartin, S ;
GarciaAlvarado, F ;
Robertson, AD ;
West, AR ;
AlarioFranco, MA .
JOURNAL OF SOLID STATE CHEMISTRY, 1997, 128 (01) :97-101
[6]   Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides [J].
Inaguma, Y ;
Itoh, M .
SOLID STATE IONICS, 1996, 86-8 :257-260
[7]   Effect of substitution and pressure on lithium ion conductivity in perovskites Ln(1/2)Li(1/2)TiO(3) (Ln=La, Pr, Nd and Sm) [J].
Inaguma, Y ;
Matsui, Y ;
Yu, JD ;
Shan, YJ ;
Nakamura, T ;
Itoh, M .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1997, 58 (06) :843-852
[8]   HIGH IONIC-CONDUCTIVITY IN LITHIUM LANTHANUM TITANATE [J].
INAGUMA, Y ;
CHEN, LQ ;
ITOH, M ;
NAKAMURA, T ;
UCHIDA, T ;
IKUTA, H ;
WAKIHARA, M .
SOLID STATE COMMUNICATIONS, 1993, 86 (10) :689-693
[9]   HIGH LITHIUM ION CONDUCTIVITY IN THE PEROVSKITE-TYPE COMPOUNDS LN1/2LI1/2TIO3 (LN=LA,PR,ND,SM) [J].
ITOH, M ;
INAGUMA, Y ;
JUNG, WH ;
CHEN, LQ ;
NAKAMURA, T .
SOLID STATE IONICS, 1994, 70 (pt 1) :203-207
[10]  
Julien C., 1994, Solid State Batteries: Materials Design and Optimization