Monolithic nanostructured silicate family templated by lyotropic liquid-crystalline nonionic surfactant mesophases

被引:53
作者
El-Safty, SA [1 ]
Hanaoka, T
机构
[1] Tanta Univ, Fac Sci, Dept Chem, Tanta, Egypt
[2] Natl Adv Ind Sci & Technol, Tohoku Ctr, Miyagino Ku, Sendai, Miyagi 9838551, Japan
关键词
D O I
10.1021/cm0204829
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A family of well-defined highly ordered mesoporous silica materials (designated as HOM) was synthesized by using a high concentration of nonionic amphiphile of Brij 56 surfactant (C18EO10) as a structure-directing species. Monolithic nanostructures with regular arrays and extended periodicity were produced under acidic conditions and different ambient temperatures (25-45 degreesC). Liquid-crystal phases formed in aqueous/silica domains played an important role in controlling the monolithic structural morphology. The direct templating method enhanced the phase topology of Brij 56 with three-dimensional (3-D) accessible mesoporous silica of primitive-centered cubic Pn3m (HOM-7), 3-D hexagonal P6(3)/mmc (HOM-3), and solid phase (S) with cubic Ia3d space group (HOM-5) mesophases. By adjustment of the phase behavior of Brij 56/TMOS mass ratio, ca. 35, 50, 70, and 75 wt %, the method yielded predictable mesophase structures of cubic spherical micellar Im3m (HOM-1), 2-D hexagonal P6mm (HOM-2), bicontinuous cubic Ia3d (HOM-5), and lamellar L-infinity (HOM-6), respectively. A significant result was that the long-range ordered silica monoliths remained unchanged throughout the fast condensation of TMOS and removal of Brij 56 surfactant. Furthermore, all of the silica monoliths (HOM-types) had high surface area, uniform mesopore channels, well-defined morphological architectures, and large wall thickness of materials. HOM mesoporous molecular sieves were characterized by using powder X-ray diffraction, the Brunauer-Emmett-Teller method for nitrogen adsorption/desorption isotherms, transmission electron microscopy, and scanning electron microscopy. The results show that this direct template methodology can be used to successfully synthesize periodic mesoporous silica monoliths with a high degree of control over the mesopore morphology and the surfactant mesophase structures.
引用
收藏
页码:2892 / 2902
页数:11
相关论文
共 57 条
[1]   Cubosome description of the inorganic mesoporous structure MCM-48 [J].
Alfredsson, V ;
Anderson, MW ;
Ohsuna, T ;
Terasaki, O ;
Jacob, M ;
Bojrup, M .
CHEMISTRY OF MATERIALS, 1997, 9 (10) :2066-2070
[2]   Monolithic periodic mesoporous silica gels [J].
Anderson, MT ;
Martin, JE ;
Odinek, JG ;
Newcomer, PP ;
Wilcoxon, JP .
MICROPOROUS MATERIALS, 1997, 10 (1-3) :13-24
[3]   LIQUID-CRYSTALLINE PHASES AS TEMPLATES FOR THE SYNTHESIS OF MESOPOROUS SILICA [J].
ATTARD, GS ;
GLYDE, JC ;
GOLTNER, CG .
NATURE, 1995, 378 (6555) :366-368
[4]   Inorganic nanostructures from lyotropic liquid crystal phases [J].
Attard, GS ;
Edgar, M ;
Goltner, CG .
ACTA MATERIALIA, 1998, 46 (03) :751-758
[5]  
Attard GS, 2000, MACROMOL SYMP, V156, P179, DOI 10.1002/1521-3900(200007)156:1<179::AID-MASY179>3.0.CO
[6]  
2-7
[7]   Mesoporous aluminoborates [J].
Ayyappan, S ;
Rao, CNR .
CHEMICAL COMMUNICATIONS, 1997, (06) :575-576
[8]   TEMPLATING OF MESOPOROUS MOLECULAR-SIEVES BY NONIONIC POLYETHYLENE OXIDE SURFACTANTS [J].
BAGSHAW, SA ;
PROUZET, E ;
PINNAVAIA, TJ .
SCIENCE, 1995, 269 (5228) :1242-1244
[9]   Preparation of partially oriented zeolite MCM-22 membranes via pulsed laser deposition [J].
Balkus, KJ ;
Gbery, G ;
Deng, ZS .
MICROPOROUS AND MESOPOROUS MATERIALS, 2002, 52 (03) :141-150
[10]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380