Members of the large Maf transcription family regulate insulin gene transcription in islet β cells

被引:258
作者
Matsuoka, T
Zhao, L
Artner, I
Jarrett, HW
Friedman, D
Means, A
Stein, R
机构
[1] Vanderbilt Univ, Med Ctr, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Sch Med, Dept Surg Oncol, Nashville, TN 37232 USA
[4] Univ Tennessee, Dept Biochem, Memphis, TN 38163 USA
关键词
D O I
10.1128/MCB.23.17.6049-6062.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The C1/RIPE3bl (-118/-107 bp) binding factor regulates pancreatic-beta-cell-specific and glucose-regulated transcription of the insulin gene. In the present study, the C1/RIPE3b1 activator from mouse betaTC-3 cell nuclear extracts was purified by DNA affinity chromatography and two-dimensional gel electrophoresis. C1/RIPE3b1 binding activity was found in the roughly 46-kDa fraction at pH 7.0 and pH 4.5, and each contained N- and C-terminal peptides to mouse MafA as determined by peptide mass mapping and tandem spectrometry. MafA was detected in the C1/RIPE3b1 binding complex by using MafA peptide-specific antisera. In addition, MafA was shown to bind within the enhancer region (-340/-91 bp) of the endogenous insulin gene in betaTC-3 cells in the chromatin immunoprecipitation assay. These results strongly suggested that MafA was the beta-cell-enriched component of the RIPE3b1 activator. However, reverse transcription-PCR analysis demonstrated that mouse islets express not only MafA but also other members of the large Maf family, specifically c-Maf and MafB. Furthermore, immunohistochemical studies revealed that at least MafA and MafB were present within the nuclei of islet beta cells and not within pancreas acinar cells. Because MafA, MafB, and c-Maf were each capable of specifically binding to and activating insulin C1 element-mediated expression, our results suggest that all of these factors play a role in islet beta-cell function.
引用
收藏
页码:6049 / 6062
页数:14
相关论文
共 82 条
[1]   β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes [J].
Ahlgren, U ;
Jonsson, J ;
Jonsson, L ;
Simu, K ;
Edlund, H .
GENES & DEVELOPMENT, 1998, 12 (12) :1763-1768
[2]  
[Anonymous], CELL LINEAGE FATE DE
[3]   DISTRIBUTION AND CHARACTERIZATION OF HELIX-LOOP-HELIX ENHANCER-BINDING PROTEINS FROM PANCREATIC BETA-CELLS AND LYMPHOCYTES [J].
ARONHEIM, A ;
OHLSSON, H ;
PARK, CW ;
EDLUND, T ;
WALKER, MD .
NUCLEIC ACIDS RESEARCH, 1991, 19 (14) :3893-3899
[4]   mafA, a novel member of the maf proto-oncogene family, displays developmental regulation and mitogenic capacity in avian neuroretina cells [J].
Benkhelifa, S ;
Provot, S ;
Lecoq, O ;
Pouponnot, C ;
Calothy, G ;
Felder-Schmittbuhl, MP .
ONCOGENE, 1998, 17 (02) :247-254
[5]   Phosphorylation of MafA is essential for its transcriptional and biological properties [J].
Benkhelifa, S ;
Provot, S ;
Nabais, E ;
Eychène, A ;
Calothy, G ;
Felder-Schmittbuhl, MP .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (14) :4441-4452
[6]   The Maf transcription factors: regulators of differentiation [J].
Blank, V ;
Andrews, NC .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (11) :437-441
[7]   Insulin upstream factor 1 and a novel ubiquitous factor bind to the human islet amyloid polypeptide amylin gene promoter [J].
BrethertonWatt, D ;
Gore, N ;
Boam, DSW .
BIOCHEMICAL JOURNAL, 1996, 313 :495-502
[8]   Identification of cis- and trans-active factors regulating human islet amyloid polypeptide gene expression in pancreatic beta-cells [J].
Carty, MD ;
Lillquist, JS ;
Peshavaria, M ;
Stein, R ;
Soeller, WC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (18) :11986-11993
[9]   c-Maf, the γD-crystallin Maf-responsive element and growth factor regulation [J].
Civil, A ;
van Genesen, ST ;
Lubsen, NH .
NUCLEIC ACIDS RESEARCH, 2002, 30 (04) :975-982
[10]   THE MOUSE SEGMENTATION GENE KR ENCODES A NOVEL BASIC DOMAIN LEUCINE-ZIPPER TRANSCRIPTION FACTOR [J].
CORDES, SP ;
BARSH, GS .
CELL, 1994, 79 (06) :1025-1034