Properties of MEG tomographic maps obtained with spatial filtering

被引:57
作者
Gross, J
Timmermann, L
Kujala, J
Salmelin, R
Schnitzler, A
机构
[1] Univ Dusseldorf, Dept Neurol, D-40225 Dusseldorf, Germany
[2] Aalto Univ, Low Temp Lab, Brain Res Unit, FIN-02015 Espoo, Finland
基金
芬兰科学院;
关键词
spatial filter; beamformer; resolution; confidence volume; tomographic map; DICS; SYNCHRONIZATION; LOCALIZATION; EEG;
D O I
10.1016/S1053-8119(03)00101-0
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Magnetoencephalography (MEG) has, in comparison with other functional imaging modalities, unique properties which makes it the prime candidate for the noninvasive investigation of long-range oscillatory interactions in the human brain. Recent methodological developments based on spatial filtering introduced the computation of functional tomographic maps covering the entire brain and representing the distribution of coherence to a given reference signal or the distribution of power. Because of the spatially inhomogeneous sensitivity profile of the MEG sensors, the spatial resolution of the resulting functional maps is not isotropic across the brain. Here, we introduce a convenient analytic expression for the computation of the spatial resolution at any given point in the brain. We derive the dependence of the resolution on the signal-to-noise ratio and on the changes of the leadfields. The resolution map can be displayed on anatomical MRI in the same way as the functional maps. In addition, we establish a procedure for computing a confidence volume of local maxima which is based on a bootstrap method. The confidence volume is a measure for the uncertainty of the localization. It is important for assigning local maxima of activation to specific anatomical structures and may be used to test for differences in localization between different experimental conditions. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:1329 / 1336
页数:8
相关论文
共 25 条
[1]   122-CHANNEL SQUID INSTRUMENT FOR INVESTIGATING THE MAGNETIC SIGNALS FROM THE HUMAN BRAIN [J].
AHONEN, AI ;
HAMALAINEN, MS ;
KAJOLA, MJ ;
KNUUTILA, JET ;
LAINE, PP ;
LOUNASMAA, OV ;
PARKKONEN, LT ;
SIMOLA, JT ;
TESCHE, CD .
PHYSICA SCRIPTA, 1993, T49A :198-205
[2]   Linear inverse source estimate of combined EEG and MEG data related to voluntary movements [J].
Babiloni, F ;
Carducci, F ;
Cincotti, F ;
Del Gratta, C ;
Pizzella, V ;
Romani, GL ;
Rossini, PM ;
Tecchio, F ;
Babiloni, C .
HUMAN BRAIN MAPPING, 2001, 14 (04) :197-209
[3]   Medium-range oscillatory network and the 20-Hz sensorimotor induced potential [J].
Brovelli, A ;
Battaglini, PP ;
Naranjo, JR ;
Budai, R .
NEUROIMAGE, 2002, 16 (01) :130-141
[4]   Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity [J].
Dale, AM ;
Liu, AK ;
Fischl, BR ;
Buckner, RL ;
Belliveau, JW ;
Lewine, JD ;
Halgren, E .
NEURON, 2000, 26 (01) :55-67
[5]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[6]   The neural basis of intermittent motor control in humans [J].
Gross, J ;
Timmermann, J ;
Kujala, J ;
Dirks, M ;
Schmitz, F ;
Salmelin, R ;
Schnitzler, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (04) :2299-2302
[7]   Dynamic imaging of coherent sources:: Studying neural interactions in the human brain [J].
Gross, J ;
Kujala, J ;
Hämäläinen, M ;
Timmermann, L ;
Schnitzler, A ;
Salmelin, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) :694-699
[8]   A new method to identify multiple sources of oscillatory activity from magnetoencephalographic data [J].
Jensen, O ;
Vanni, S .
NEUROIMAGE, 2002, 15 (03) :568-574
[9]  
Lachaux JP, 1999, HUM BRAIN MAPP, V8, P194, DOI 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO
[10]  
2-C