Extending the functional equivalence of radial basis function networks and fuzzy inference systems

被引:78
作者
Hunt, KJ
Haas, R
MurraySmith, R
机构
[1] Daimler-Benz AG
[2] Daimler-Benz AG Systems Technology Research
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1996年 / 7卷 / 03期
关键词
D O I
10.1109/72.501735
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We establish the functional equivalence of a generalized class of Gaussian radial basis function (RBF's) networks and the full Takagi-Sugeno model of fuzzy inference. This generalizes an existing result which applies to the standard Gaussian RBF network and a restricted form of the Takagi-Sugeno fuzzy system. The more general framework allows the removal of some of the restrictive conditions of the previous result.
引用
收藏
页码:776 / 781
页数:6
相关论文
共 17 条
[1]  
[Anonymous], 1979, ADV FUZZY SET THEORY
[2]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[3]  
FOSS BA, 1993, P 3 INT C IND FUZZ C
[4]  
HUNT KJ, 1995, INT J NEURAL SYS JUN
[5]   FUNCTIONAL EQUIVALENCE BETWEEN RADIAL BASIS FUNCTION NETWORKS AND FUZZY INFERENCE SYSTEMS [J].
JANG, JSR ;
SUN, CT .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (01) :156-159
[6]  
Johansen T. A., 1992, Proceedings of the 1992 American Control Conference (IEEE Cat. No.92CH3072-6), P3037
[7]  
JOHANSEN TA, 1994, THESIS NORGES TH TRO
[8]  
JONES RD, 1989, P IEEE C NEUR NETW
[9]  
KOSKO B, 1992, NEURAL NETS FUZZY SY
[10]   Fast Learning in Networks of Locally-Tuned Processing Units [J].
Moody, John ;
Darken, Christian J. .
NEURAL COMPUTATION, 1989, 1 (02) :281-294