Enteric viruses of humans and animals in aquatic environments: Health risks, detection, and potential water quality assessment tools

被引:543
作者
Fong, TT [1 ]
Lipp, EK [1 ]
机构
[1] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA
关键词
D O I
10.1128/MMBR.69.2.357-371.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Waterborne enteric viruses threaten both human and animal health. These pathogens are host specific and cause a wide range of diseases and symptoms in humans or other animals. While considerable research has documented the risk of enteric viruses to human health from contact with contaminated water, the current bacterial indicator-based methods for evaluation of water quality are often ineffectual proxies for pathogenic viruses. Additionally, relatively little work has specifically investigated the risk of waterborne viruses to animal health, and this risk currently is not addressed by routine water quality assessments. Nonetheless, because of their host specificity, enteric viruses can fulfill a unique role both for assessing health risks and as measures of contamination source in a watershed, yet the use of animal, as well as human, host-specific viruses in determining sources of fecal pollution has received little attention. With improved molecular detection assays, viruses from key host groups can be targeted directly using PCR amplification or hybridization with a high level of sensitivity, and specificity. A multispecies viral analysis would provide needed information for controlling pollution by source, determining human health risks based on assessments of human virus loading and exposure, and determining potential risks to production animal health and could indicate the potential for the presence of other zoonotic pathogens. While there is a need to better understand the prevalence and environmental distribution of nonhuman enteric viruses, the development of improved methods for specific and sensitive detection will facilitate the use of these microbes for library-independent source tracking and water quality assessment tools.
引用
收藏
页码:357 / +
页数:16
相关论文
共 174 条
[1]   Viruses in mussels: Public health implications and depuration [J].
Abad, FX ;
Pinto, RM ;
Gajardo, R ;
Bosch, A .
JOURNAL OF FOOD PROTECTION, 1997, 60 (06) :677-681
[2]   RECOVERY OF ENTEROVIRUS FROM PRIMARY SLUDGE USING 3 ELUTION CONCENTRATION PROCEDURES [J].
ALBERT, M ;
SCHWARTZBROD, L .
WATER SCIENCE AND TECHNOLOGY, 1991, 24 (02) :225-228
[3]   DETECTION OF ADENOVIRUSES IN STOOLS FROM HEALTHY-PERSONS AND PATIENTS WITH DIARRHEA BY 2-STEP POLYMERASE CHAIN-REACTION [J].
ALLARD, A ;
ALBINSSON, B ;
WADELL, G .
JOURNAL OF MEDICAL VIROLOGY, 1992, 37 (02) :149-157
[4]  
[Anonymous], 1998, FED REG, V63, P10274
[5]   Comparison of seven RNA extraction methods on stool and shellfish samples prior to hepatitis A virus amplification [J].
Arnal, C ;
Ferré-Aubineau, V ;
Besse, B ;
Mignotte, B ;
Schwartzbrod, L ;
Billaudel, S .
JOURNAL OF VIROLOGICAL METHODS, 1999, 77 (01) :17-26
[6]   First molecular evidence for the existence of distinct fish and snake adenoviruses [J].
Benkö, M ;
Élö, P ;
Ursu, K ;
Ahne, W ;
LaPatra, SE ;
Thomson, D ;
Harrach, B .
JOURNAL OF VIROLOGY, 2002, 76 (19) :10056-10059
[7]   Application of a rapid method for identifying fecal pollution sources in a multi-use estuary [J].
Bernhard, AE ;
Goyard, T ;
Simonich, MT ;
Field, KG .
WATER RESEARCH, 2003, 37 (04) :909-913
[8]   Simultaneous detection of enteric viruses by multiplex real-time RT-PCR [J].
Beuret, C .
JOURNAL OF VIROLOGICAL METHODS, 2004, 115 (01) :1-8
[9]  
Bitton G., 1980, INTRO ENV VIROLOGY
[10]   Tiered approach for identification of a human fecal pollution source at a recreational beach: Case study at Avalon Cay, Catalina Island, California [J].
Boehm, AB ;
Fuhrman, JA ;
Mrse, RD ;
Grant, SB .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (04) :673-680