Multivariate pattern classification of gray matter pathology in multiple sclerosis

被引:48
作者
Bendfeldt, Kerstin [1 ]
Kloeppel, Stefan [2 ]
Nichols, Thomas E. [3 ,4 ]
Smieskova, Renata [1 ,6 ]
Kuster, Pascal [1 ]
Traud, Stefan [1 ]
Mueller-Lenke, Nicole [1 ]
Naegelin, Yvonne [5 ]
Kappos, Ludwig [5 ]
Radue, Ernst-Wilhelm [1 ]
Borgwardt, Stefan J. [1 ,6 ,7 ]
机构
[1] Univ Basel Hosp, Med Image Anal Ctr, CH-4031 Basel, Switzerland
[2] Freiburg Brain Imaging, Dept Psychiat & Psychotherapy, D-79104 Freiburg, Germany
[3] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[4] Univ Warwick, Warwick Mfg Grp, Coventry CV4 7AL, W Midlands, England
[5] Univ Basel Hosp, Dept Neurol, CH-4031 Basel, Switzerland
[6] Univ Basel, Univ Basel Hosp, Dept Psychiat, CH-4031 Basel, Switzerland
[7] Kings Coll London, Sect Neuroimaging, London, England
基金
英国医学研究理事会;
关键词
Gray matter; MRI; Multiple sclerosis; Support vector machines; Multivariate pattern analysis; VOXEL-BASED MORPHOMETRY; REGIONAL BRAIN ATROPHY; WHITE-MATTER; COGNITIVE IMPAIRMENT; CORTICAL ATROPHY; MS PATIENTS; DISABILITY PROGRESSION; ALZHEIMERS-DISEASE; PREDICTIVE-VALUE; CEREBRAL-CORTEX;
D O I
10.1016/j.neuroimage.2011.12.070
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Univariate analyses have identified gray matter (GM) alterations in different groups of MS patients. While these methods detect differences on the basis of the single voxel or cluster, multivariate methods like support vector machines (SVM) identify the complex neuroanatomical patterns of GM differences. Using multivariate linear SVM analysis and leave-one-out cross-validation, we aimed at identifying neuroanatomical GM patterns relevant for individual classification of MS patients. We used SVM to separate GM segmentations of T1-weighted three-dimensional magnetic resonance (MR) imaging scans within different age- and sex-matched groups of MS patients with either early (n = 17) or late MS (n = 17) (contrast I), low (n = 20) or high (n = 20) white matter lesion load (contrast II), and benign MS (B MS. n = 13) or non-benign MS (NBMS, n = 13) (contrast III) scanned on a single 1.5 T MR scanner. GM patterns most relevant for individual separation of MS patients comprised cortical areas of all the cerebral lobes as well as deep GM structures, including the thalamus and caudate. The patterns detected were sufficiently informative to separate individuals of the respective groups with high sensitivity and specificity in 85% (contrast I), 83% (contrast II) and 77% (contrast III) of cases. The study demonstrates that neuroanatomical spatial patterns of GM segmentations contain information sufficient for correct classification of MS patients at the single case level, thus making multivariate SVM analysis a promising clinical application. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:400 / 408
页数:9
相关论文
共 83 条
[1]   Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis [J].
Amato, M. P. ;
Portaccio, E. ;
Stromillo, M. L. ;
Goretti, B. ;
Zipoli, V. ;
Siracusa, G. ;
Battaglini, M. ;
Giorgio, A. ;
Bartolozzi, M. L. ;
Guidi, L. ;
Sorbi, S. ;
Federico, A. ;
De Stefano, N. .
NEUROLOGY, 2008, 71 (09) :632-638
[2]   Association of neocortical volume changes with cognitive deterioration in relapsing-remitting multiple sclerosis [J].
Amato, Maria Pia ;
Portaccio, Emilio ;
Goretti, Benedetta ;
Zipoli, Valentina ;
Battaglini, Marco ;
Bartolozzi, Maria Letizia ;
Stromillo, Maria Laura ;
Guidi, Leonello ;
Siracusa, Gianfranco ;
Sorbi, Sandro ;
Federico, Antonio ;
De Stefano, Nicola .
ARCHIVES OF NEUROLOGY, 2007, 64 (08) :1157-1161
[3]   Neocortical volume decrease in relapsing-remitting MS patients with mild cognitive impairment [J].
Amato, MP ;
Bartolozzi, ML ;
Zipoli, V ;
Portaccio, E ;
Mortilla, M ;
Guidi, L ;
Siracusa, G ;
Sorbi, S ;
Federico, A ;
De Stefano, N .
NEUROLOGY, 2004, 63 (01) :89-93
[4]  
Ashburner J, 1999, HUM BRAIN MAPP, V7, P254, DOI 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO
[5]  
2-G
[6]   Localization of grey matter atrophy in early RRMS - A longitudinal study [J].
Audoin, Bertrand ;
Davies, Gerard R. ;
Finisku, Leonara ;
Chard, Declan T. ;
Thompson, Alan J. ;
Miller, David H. .
JOURNAL OF NEUROLOGY, 2006, 253 (11) :1495-1501
[7]   Regional brain atrophy is associated with physical disability in multiple sclerosis: Semiquantitative magnetic resonance imaging and relationship to clinical findings [J].
Bakshi, R ;
Benedict, RHB ;
Bermel, RA ;
Jacobs, L .
JOURNAL OF NEUROIMAGING, 2001, 11 (02) :129-136
[8]   Voxel-wise assessment of progression of regional brain atrophy in relapsing-remitting multiple sclerosis [J].
Battaglini, Marco ;
Giorgio, Antonio ;
Stromillo, Maria L. ;
Bartolozzi, Maria L. ;
Guidi, Leonello ;
Federico, Antonio ;
De Stefano, Nicola .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2009, 282 (1-2) :55-60
[9]   Longitudinal gray matter changes in multiple sclerosisuDifferential scanner and overall disease-related effects [J].
Bendfeldt, Kerstin ;
Hofstetter, Louis ;
Kuster, Pascal ;
Traud, Stefan ;
Mueller-Lenke, Nicole ;
Naegelin, Yvonne ;
Kappos, Ludwig ;
Gass, Achim ;
Nichols, Thomas E. ;
Barkhof, Frederik ;
Vrenken, Hugo ;
Roosendaal, Stefan D. ;
Geurts, Jeroen J. G. ;
Radue, Ernst-Wilhelm ;
Borgwardt, Stefan J. .
HUMAN BRAIN MAPPING, 2012, 33 (05) :1225-1245
[10]   Spatiotemporal Distribution Pattern of White Matter Lesion Volumes and Their Association With Regional Grey Matter Volume Reductions in Relapsing-Remitting Multiple Sclerosis [J].
Bendfeldt, Kerstin ;
Blumhagen, Jan Ole ;
Egger, Hanspeter ;
Loetscher, Patrick ;
Denier, Niklaus ;
Kuster, Pascal ;
Traud, Stefan ;
Mueller-Lenke, Nicole ;
Naegelin, Yvonne ;
Gass, Achim ;
Hirsch, Jochen ;
Kappos, Ludwig ;
Nichols, Thomas E. ;
Radue, Ernst-Wilhelm ;
Borgwardt, Stefan J. .
HUMAN BRAIN MAPPING, 2010, 31 (10) :1542-1555