Design and Fabrication of Tubular Scaffolds via Direct Writing in a Melt Electrospinning Mode

被引:165
作者
Brown, Toby D. [1 ]
Slotosch, Anna [1 ,2 ]
Thibaudeau, Laure [1 ]
Taubenberger, Anna [1 ]
Loessner, Daniela [1 ]
Vaquette, Cedryck [1 ]
Dalton, Paul D. [1 ]
Hutmacher, Dietmar W. [1 ]
机构
[1] Inst Hlth & Biomed Innovat, Brisbane, Qld 4059, Australia
[2] Inst Text Tech, D-52074 Aachen, Germany
基金
澳大利亚研究理事会;
关键词
FUNCTIONAL REPAIR; SYSTEM; DELIVERY; ORIENTATION; STRENGTH; FIBERS; TUBES; ANGLE;
D O I
10.1007/s13758-011-0013-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 mu m diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e. g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 51 条
[1]   Elastomeric Electrospun Polyurethane Scaffolds: The Interrelationship Between Fabrication Conditions, Fiber Topology, and Mechanical Properties [J].
Amoroso, Nicholas J. ;
D'Amore, Antonio ;
Hong, Yi ;
Wagner, William R. ;
Sacks, Michael S. .
ADVANCED MATERIALS, 2011, 23 (01) :106-+
[2]   Carbon dioxide impregnation of electrospun polycaprolactone fibers [J].
Ayodeji, Olukemi ;
Graham, Emily ;
Kniss, Douglas ;
Lannutti, John ;
Tomasko, David .
JOURNAL OF SUPERCRITICAL FLUIDS, 2007, 41 (01) :173-178
[3]  
Bell JHA, 2012, TISSUE ENG PART B-RE, V18, P116, DOI [10.1089/ten.teb.2011.0498, 10.1089/ten.TEB.2011.0498]
[4]   Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration [J].
Bini, TB ;
Gao, SJ ;
Tan, TC ;
Wang, S ;
Lim, A ;
Hai, LB ;
Ramakrishna, S .
NANOTECHNOLOGY, 2004, 15 (11) :1459-1464
[5]   Effects of protein dose and delivery system on BMP-mediated bone regeneration [J].
Boerckel, Joel D. ;
Kolambkar, Yash M. ;
Dupont, Kenneth M. ;
Uhrig, Brent A. ;
Phelps, Edward A. ;
Stevens, Hazel Y. ;
Garcia, Andres J. ;
Guldberg, Robert E. .
BIOMATERIALS, 2011, 32 (22) :5241-5251
[6]   Direct Writing By Way of Melt Electrospinning [J].
Brown, Toby D. ;
Dalton, Paul D. ;
Hutmacher, Dietmar W. .
ADVANCED MATERIALS, 2011, 23 (47) :5651-+
[7]   Poly(ε-caprolactone)-clay nanocomposites:: Structure and mechanical properties [J].
Chen, BQ ;
Evans, JRG .
MACROMOLECULES, 2006, 39 (02) :747-754
[8]   Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning [J].
Chung, Sangwon ;
Ingle, Nilesh P. ;
Montero, Gerardo A. ;
Kim, Soo Hyun ;
King, Martin W. .
ACTA BIOMATERIALIA, 2010, 6 (06) :1958-1967
[9]   Design, fabrication and characterization of PCL electrospun scaffolds-a review [J].
Cipitria, A. ;
Skelton, A. ;
Dargaville, T. R. ;
Dalton, P. D. ;
Hutmacher, D. W. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (26) :9419-9453
[10]   Patterned melt electrospun substrates for tissue engineering [J].
Dalton, Paul D. ;
Joergensen, Nanna T. ;
Groll, Juergen ;
Moeller, Martin .
BIOMEDICAL MATERIALS, 2008, 3 (03)