Stem Cell Based Therapy for Skeletal Muscle Diseases

被引:17
作者
Bhagavati, Satyakam [1 ]
机构
[1] Suny Downstate Med Ctr, Dept Neurol, Brooklyn, NY 11203 USA
关键词
D O I
10.2174/157488808785740343
中图分类号
Q813 [细胞工程];
学科分类号
摘要
The use of stem cells to repair and replace damaged skeletal muscle cells in chronic, debilitating muscle diseases such as the muscular dystrophies holds great promise. Different stem cell populations, both of embryonic and adult origin display the potential to generate skeletal muscle cells and have been studied in animal models of muscular dystrophy. These include muscle derived satellite cells; bone marrow derived mesenchymal stem cells, muscle or bone marrow side population cells, circulating CD133+ cells and cells derived from blood vessel walls such as mesoangioblasts or pericytes. The design of effective stem cell based therapies requires a detailed understanding of the molecules and signaling pathways which determine myogenic lineage commitment and differentiation. We discuss the great strides that have been made in delineating these pathways and how a better understanding of muscle stem cell biology has the potential to lead to more effective stem cell based therapies for skeletal muscle regeneration for devastating muscle diseases.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 118 条
[1]   Myostatin imposes reversible quiescence on embryonic muscle precursors [J].
Amthor, H ;
Otto, A ;
Macharia, R ;
McKinnell, I ;
Patel, K .
DEVELOPMENTAL DYNAMICS, 2006, 235 (03) :672-680
[2]   Continuous subendothelial network formed by pericyte-like cells in human vascular bed [J].
Andreeva, ER ;
Pugach, IM ;
Gordon, D ;
Orekhov, AN .
TISSUE & CELL, 1998, 30 (01) :127-135
[3]   IMMUNOSTAINING OF SKELETAL AND CARDIAC-MUSCLE SURFACE-MEMBRANE WITH ANTIBODY AGAINST DUCHENNE MUSCULAR-DYSTROPHY PEPTIDE [J].
ARAHATA, K ;
ISHIURA, S ;
ISHIGURO, T ;
TSUKAHARA, T ;
SUHARA, Y ;
EGUCHI, C ;
ISHIHARA, T ;
NONAKA, I ;
OZAWA, E ;
SUGITA, H .
NATURE, 1988, 333 (6176) :861-863
[4]   Myogenic specification of side population cells in skeletal muscle [J].
Asakura, A ;
Seale, P ;
Girgis-Gabardo, A ;
Rudnicki, MA .
JOURNAL OF CELL BIOLOGY, 2002, 159 (01) :123-134
[5]  
Asakura A, 2002, MOUSE DEV, pp253
[6]   Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells [J].
Bachrach, E ;
Li, S ;
Perez, AL ;
Schienda, J ;
Liadaki, K ;
Volinski, J ;
Flint, A ;
Chamberlain, J ;
Kunkel, LM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (10) :3581-3586
[7]   Muscle engraftment of myogenic progenitor cells following intraarterial transplantation [J].
Bachrach, Estanislao ;
Perez, Antonio L. ;
Choi, Yeong-Hoon ;
Illigens, Ben M. W. ;
Jun, Susan J. ;
Del Nido, Pedro ;
McGowan, Francis X. ;
Sheng Li ;
Flint, Alan ;
Chamberlain, Jeffrey ;
Kunkel, Louis M. .
MUSCLE & NERVE, 2006, 34 (01) :44-52
[8]   Derivation of engraftable skeletal myoblasts from human embryonic stem cells [J].
Barberi, Tiziano ;
Bradbury, Michelle ;
Dincer, Zehra ;
Panagiotakos, Georgia ;
Socci, Nicholas D. ;
Studer, Lorenz .
NATURE MEDICINE, 2007, 13 (05) :642-648
[9]   Dystroglycan: from biosynthesis to pathogenesis of human disease [J].
Barresi, R ;
Campbell, KP .
JOURNAL OF CELL SCIENCE, 2006, 119 (02) :199-207
[10]   Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells [J].
Beauchamp, JR ;
Heslop, L ;
Yu, DSW ;
Tajbakhsh, S ;
Kelly, RG ;
Wernig, A ;
Buckingham, ME ;
Partridge, TA ;
Zammit, PS .
JOURNAL OF CELL BIOLOGY, 2000, 151 (06) :1221-1233