Contribution of individual spikes in burst-induced long-term synaptic modification

被引:134
作者
Froemke, RC
Tsay, IA
Raad, M
Long, JD
Dan, Y [1 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Grad Grp Biophys, Berkeley, CA 94720 USA
关键词
D O I
10.1152/jn.00910.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Longterm synaptic modification depends on the relative timing of individual pre- and postsynaptic spikes, but the rules governing the effects of multispike bursts remain to be fully understood. In particular, some studies suggest that the spike timing dependence of synaptic modification breaks down with high-frequency bursts. In this study, we characterized the effects of pre- and postsynaptic bursts on long-term modification of layer 2/3 synapses in visual cortical slices from young rats. We found that, while pairing-induced synaptic modification depends on the burst frequency, this dependence can be explained in terms of the timing of individual pre- and postsynaptic spikes. Later spikes in each burst are less effective in synaptic modification, but spike efficacy is regulated differently in pre- and postsynaptic bursts. Presynaptically, spike efficacy is progressively weakened, in parallel with short-term synaptic depression. Postsynaptically, spike efficacy is suppressed to a lesser extent, and it depends on postsynaptic potassium channel activation. Such timing-dependent interaction among multiple spikes can account for synaptic modifications induced by a variety of spike trains, including the frequency-dependent transition from depression to potentiation induced by a postsynaptic burst preceding a presynaptic burst.
引用
收藏
页码:1620 / 1629
页数:10
相关论文
共 54 条
[1]   Long-term depression induced by sensory deprivation during cortical map plasticity in vivo [J].
Allen, CB ;
Celikel, T ;
Feldman, DE .
NATURE NEUROSCIENCE, 2003, 6 (03) :291-299
[2]   DIFFERENT VOLTAGE-DEPENDENT THRESHOLDS FOR INDUCING LONG-TERM DEPRESSION AND LONG-TERM POTENTIATION IN SLICES OF RAT VISUAL-CORTEX [J].
ARTOLA, A ;
BROCHER, S ;
SINGER, W .
NATURE, 1990, 347 (6288) :69-72
[3]   Responses of neurons in primary and inferior temporal visual cortices to natural scenes [J].
Baddeley, R ;
Abbott, LF ;
Booth, MCA ;
Sengpiel, F ;
Freeman, T ;
Wakeman, EA ;
Rolls, ET .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 264 (1389) :1775-1783
[4]   Synaptic plasticity in a cerebellum-like structure depends on temporal order [J].
Bell, CC ;
Han, VZ ;
Sugawara, Y ;
Grant, K .
NATURE, 1997, 387 (6630) :278-281
[5]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[6]   Developmentally restricted synaptic plasticity in a songbird nucleus required for song learning [J].
Boettiger, CA ;
Doupe, AJ .
NEURON, 2001, 31 (05) :809-818
[7]   INTRINSIC FIRING PATTERNS OF DIVERSE NEOCORTICAL NEURONS [J].
CONNORS, BW ;
GUTNICK, MJ .
TRENDS IN NEUROSCIENCES, 1990, 13 (03) :99-104
[8]   Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures [J].
Debanne, D ;
Gähwiler, BH ;
Thompson, SM .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 507 (01) :237-247
[9]   ASYNCHRONOUS PRESYNAPTIC AND POSTSYNAPTIC ACTIVITY INDUCES ASSOCIATIVE LONG-TERM DEPRESSION IN AREA CA1 OF THE RAT HIPPOCAMPUS IN-VITRO [J].
DEBANNE, D ;
GAHWILER, BH ;
THOMPSON, SM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (03) :1148-1152
[10]   Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex [J].
Feldman, DE .
NEURON, 2000, 27 (01) :45-56