Visually integrating and exploring high throughput Phenome-Wide Association Study (PheWAS) results using PheWAS-View

被引:36
作者
Pendergrass, Sarah A. [1 ]
Dudek, Scott M. [1 ]
Crawford, Dana C. [2 ,3 ]
Ritchie, Marylyn D. [1 ]
机构
[1] Penn State Univ, Eberly Coll Sci, Huck Inst Life Sci, Dept Biochem & Mol Biol,Ctr Syst Genom, University Pk, PA 16802 USA
[2] Vanderbilt Univ, Med Ctr, Ctr Human Genet Res, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Med Ctr, Dept Mol Physiol & Biophys, Nashville, TN 37235 USA
来源
BIODATA MINING | 2012年 / 5卷
关键词
PheWAS; Phenome-Wide Association Study; Visualization;
D O I
10.1186/1756-0381-5-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Phenome-Wide Association Studies (PheWAS) can be used to investigate the association between single nucleotide polymorphisms (SNPs) and a wide spectrum of phenotypes. This is a complementary approach to Genome Wide Association studies (GWAS) that calculate the association between hundreds of thousands of SNPs and one or a limited range of phenotypes. The extensive exploration of the association between phenotypic structure and genotypic variation through PheWAS produces a set of complex and comprehensive results. Integral to fully inspecting, analysing, and interpreting PheWAS results is visualization of the data. Results: We have developed the software PheWAS-View for visually integrating PheWAS results, including information about the SNPs, relevant genes, phenotypes, and the interrelationships between phenotypes, that exist in PheWAS. As a result both the fine grain detail as well as the larger trends that exist within PheWAS results can be elucidated. Conclusions: PheWAS can be used to discover novel relationships between SNPs, phenotypes, and networks of interrelated phenotypes; identify pleiotropy; provide novel mechanistic insights; and foster hypothesis generation - and these results can be both explored and presented with PheWAS-View. PheWAS-View is freely available for non-commercial research institutions, for full details see http://ritchielab.psu.edu/ritchielab/software.
引用
收藏
页数:11
相关论文
共 4 条
[1]   Variants Near FOXE1 Are Associated with Hypothyroidism and Other Thyroid Conditions: Using Electronic Medical Records for Genome- and Phenome-wide Studies [J].
Denny, Joshua C. ;
Crawford, Dana C. ;
Ritchie, Marylyn D. ;
Bielinski, Suzette J. ;
Basford, Melissa A. ;
Bradford, Yuki ;
Chai, High Seng ;
Bastarache, Lisa ;
Zuvich, Rebecca ;
Peissig, Peggy ;
Carrell, David ;
Ramirez, Andrea H. ;
Pathak, Jyotishman ;
Wilke, Russell A. ;
Rasmussen, Luke ;
Wang, Xiaoming ;
Pacheco, Jennifer A. ;
Kho, Abel N. ;
Hayes, M. Geoffrey ;
Weston, Noah ;
Matsumoto, Martha ;
Kopp, Peter A. ;
Newton, Katherine M. ;
Jarvik, Gail P. ;
Li, Rongling ;
Manolio, Teri A. ;
Kullo, Iftikhar J. ;
Chute, Christopher G. ;
Chisholm, Rex L. ;
Larson, Eric B. ;
McCarty, Catherine A. ;
Masys, Daniel R. ;
Roden, Dan M. ;
de Andrade, Mariza .
AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 89 (04) :529-542
[2]   PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations [J].
Denny, Joshua C. ;
Ritchie, Marylyn D. ;
Basford, Melissa A. ;
Pulley, Jill M. ;
Bastarache, Lisa ;
Brown-Gentry, Kristin ;
Wang, Deede ;
Masys, Dan R. ;
Roden, Dan M. ;
Crawford, Dana C. .
BIOINFORMATICS, 2010, 26 (09) :1205-1210
[3]   The Next PAGE in Understanding Complex Traits: Design for the Analysis of Population Architecture Using Genetics and Epidemiology (PAGE) Study [J].
Matise, Tara C. ;
Ambite, Jose Luis ;
Buyske, Steven ;
Carlson, Christopher S. ;
Cole, Shelley A. ;
Crawford, Dana C. ;
Haiman, Christopher A. ;
Heiss, Gerardo ;
Kooperberg, Charles ;
Le Marchand, Loic ;
Manolio, Teri A. ;
North, Kari E. ;
Peters, Ulrike ;
Ritchie, Marylyn D. ;
Hindorff, Lucia A. ;
Haines, Jonathan L. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 174 (07) :849-859
[4]   The Use of Phenome-Wide Association Studies (PheWAS) for Exploration of Novel Genotype-Phenotype Relationships and Pleiotropy Discovery [J].
Pendergrass, S. A. ;
Brown-Gentry, K. ;
Dudek, S. M. ;
Torstenson, E. S. ;
Ambite, J. L. ;
Avery, C. L. ;
Buyske, S. ;
Cai, C. ;
Fesinmeyer, M. D. ;
Haiman, C. ;
Heiss, G. ;
Hindorff, L. A. ;
Hsu, C. -N. ;
Jackson, R. D. ;
Kooperberg, C. ;
Le Marchand, L. ;
Lin, Y. ;
Matise, T. C. ;
Moreland, L. ;
Monroe, K. ;
Reiner, A. P. ;
Wallace, R. ;
Wilkens, L. R. ;
Crawford, D. C. ;
Ritchie, M. D. .
GENETIC EPIDEMIOLOGY, 2011, 35 (05) :410-422