A logic for rough sets

被引:54
作者
Duntsch, I
机构
[1] Sch. of Info. and Software Eng., University of Ulster
关键词
D O I
10.1016/S0304-3975(96)00334-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The collection of all subsets of a set forms a Boolean algebra under the usual set-theoretic operations, while the collection of rough sets of an approximation space is a regular double Stone algebra (Pomykala and Pomykala, 1988). The appropriate class of algebras for classical propositional logic are Boolean algebras, and it is reasonable to assume that regular double Stone algebras are a class of algebras appropriate for a logic of rough sets. Using the representation theorem for these algebras by Katrinak (1974), we present such a logic for rough sets and its algebraic semantics in the spirit of Andreka and Nemeti (1994).
引用
收藏
页码:427 / 436
页数:10
相关论文
共 29 条
[1]  
ANDREKA H, 1981, C MATH SOC J BOLYAI, V26, P25
[2]  
ANDREKA H, 1992, 9292 U AMST DEP STAT
[3]  
ANDREKA H, 1975, THESIS HUNGARIAN ACA
[4]  
ANDREKA H, 1994, STUDIES LOGIC COMPUT, V4, P393
[5]  
Balbes R., 1974, DISTRIBUTIVE LATTICE
[6]  
COMER S, 1993, METHODS LOGIC COMPUT, V28
[7]  
Comer S. D., 1991, Fundamenta Informaticae, V14, P492
[8]  
DOMOLKI B, 1981, C MATH SOC J BOLYAI, V26
[9]  
DUNTSCH I, 1983, HOUSTON J MATH, V9, P455
[10]  
Duntsch I., 1994, Fundamenta Informaticae, V21, P321