A logic for rough sets

被引:54
作者
Duntsch, I
机构
[1] Sch. of Info. and Software Eng., University of Ulster
关键词
D O I
10.1016/S0304-3975(96)00334-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The collection of all subsets of a set forms a Boolean algebra under the usual set-theoretic operations, while the collection of rough sets of an approximation space is a regular double Stone algebra (Pomykala and Pomykala, 1988). The appropriate class of algebras for classical propositional logic are Boolean algebras, and it is reasonable to assume that regular double Stone algebras are a class of algebras appropriate for a logic of rough sets. Using the representation theorem for these algebras by Katrinak (1974), we present such a logic for rough sets and its algebraic semantics in the spirit of Andreka and Nemeti (1994).
引用
收藏
页码:427 / 436
页数:10
相关论文
共 29 条
[11]  
DUNTSCH I, UNPUB ROUGH SETS ALG
[12]  
DUNTSCH I, UNPUB ENTAILMENT REL
[13]  
EPSTEIN RL, 1990, NIJHOFF INT PHILOSPH, V35
[14]  
Henkin L., 1985, CYLINDRIC ALGEBRAS 2
[15]   COMPLEMENTATION IN LATTICE OF REGULAR TOPOLOGIES [J].
HUEBENER, MJ .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 43 (01) :139-149
[16]  
KATRINAK T, 1974, B SOC ROY SCI LIEGE, V43, P294
[17]  
Lin T.Y., 1992, INTELLIGENT DECISION, P287
[18]  
NEMETI I, 1981, C MATH SOC J BOLYAI, V26, P561
[19]   LOGIC FOR REASONING ABOUT KNOWLEDGE [J].
ORLOWSKA, E .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (06) :559-572
[20]   MODAL-LOGICS IN THE THEORY OF INFORMATION-SYSTEMS [J].
ORLOWSKA, E .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1984, 30 (03) :213-222