Global genome removal of thymine glycol in Escherichia coli requires endonuclease III but the persistence of processed repair intermediates rather than thymine glycol correlates with cellular sensitivity to high doses of hydrogen peroxide

被引:8
作者
Alanazi, M
Leadon, SA
Mellon, I [1 ]
机构
[1] Univ Kentucky, Lucille P Markey Canc Ctr, Dept Pathol & Lab Med, Lexington, KY 40536 USA
[2] Univ N Carolina, Dept Radiat Oncol, Chapel Hill, NC 27599 USA
[3] Univ Kentucky, Dept Biochem & Mol Biol, Lexington, KY 40536 USA
关键词
D O I
10.1093/nar/gkf588
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Using a monoclonal antibody that specifically recognizes thymine glycol (Tg) in DNA, we measured the kinetics of the removal of Tg from the genomes of wild-type and repair gene mutant strains of Escherichia coli treated with hydrogen peroxide. Tg is rapidly and efficiently removed from the total genomes of repair-proficient cells in vivo and the removal of Tg is completely dependent on the nth gene that encodes the endonuclease III glycosylase. Hence, it appears that little redundancy in the repair of Tg occurs in vivo, at least under the conditions used here. Moreover, previous studies have found that nth mutants are not sensitive to killing by hydrogen peroxide but xth mutant strains (deficient in the major AP endonuclease, exonuclease III) are sensitive. We find that cell death correlates with the persistence of single-strand breaks rather than the persistence of Tg. We attempted to measure transcription-coupled removal of Tg in the lactose operon using the Tg-specific monoclonal antibody in an immunoprecipitation approach but were not successful in achieving reproducible results. Furthermore, the analysis of transcription-coupled repair in the lactose operon is complicated by potent inhibition of beta-galactosidase expression by hydrogen peroxide.
引用
收藏
页码:4583 / 4591
页数:9
相关论文
共 52 条
[1]   INDUCIBLE REPAIR OF THYMINE RING SATURATION DAMAGE IN PHI-X174 DNA [J].
ACHEY, PM ;
WRIGHT, CF .
RADIATION RESEARCH, 1983, 93 (03) :609-612
[2]   Comparison of substrate specificities of Escherichia coli endonuclease III and its mouse homologue (mNTH1) using defined oligonucleotide substrates [J].
Asagoshi, K ;
Odawara, H ;
Nakano, H ;
Miyano, T ;
Terato, H ;
Ohyama, Y ;
Seki, S ;
Ide, H .
BIOCHEMISTRY, 2000, 39 (37) :11389-11398
[3]   Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli [J].
Blaisdell, JO ;
Wallace, SS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (13) :7426-7430
[4]  
BREIMER LH, 1984, J BIOL CHEM, V259, P5543
[5]   Oxidative base damage to DNA: specificity of base excision repair enzymes [J].
Cadet, J ;
Bourdat, AG ;
D'Ham, C ;
Duarte, V ;
Gasparutto, D ;
Romieu, A ;
Ravanat, JL .
MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2000, 462 (2-3) :121-128
[6]   ENDONUCLEASE-IV OF ESCHERICHIA-COLI IS INDUCED BY PARAQUAT [J].
CHAN, E ;
WEISS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (10) :3189-3193
[7]   FUNCTIONAL-EFFECTS OF CIS-THYMINE GLYCOL LESIONS ON DNA-SYNTHESIS INVITRO [J].
CLARK, JM ;
BEARDSLEY, GP .
BIOCHEMISTRY, 1987, 26 (17) :5398-5403
[8]   RETRACTED: Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G (Retracted Article. See vol 308, pg 1740, 2005) [J].
Cooper, PK ;
Nouspikel, T ;
Clarkson, SG ;
Leadon, SA .
SCIENCE, 1997, 275 (5302) :990-993
[9]   ENDONUCLEASE-III (NTH) MUTANTS OF ESCHERICHIA-COLI [J].
CUNNINGHAM, RP ;
WEISS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (02) :474-478
[10]   ENDONUCLEASE IV (NFO) MUTANT OF ESCHERICHIA-COLI [J].
CUNNINGHAM, RP ;
SAPORITO, SM ;
SPITZER, SG ;
WEISS, B .
JOURNAL OF BACTERIOLOGY, 1986, 168 (03) :1120-1127