Medical Image Data and Datasets in the Era of Machine Learning-Whitepaper from the 2016 C-MIMI Meeting Dataset Session

被引:128
作者
Kohli, Marc D. [1 ]
Summers, Ronald M. [2 ]
Geis, J. Raymond [3 ]
机构
[1] Radiol & Biomed Imaging, 505 Parnassus Ave,Moffit 391, San Francisco, CA 94117 USA
[2] NIH, Imaging Biomarkers & Comp Aided Diag Lab, Radiol & Imaging Sci, Ctr Clin, Bethesda, MD 20892 USA
[3] Univ Colorado, Sch Med, 3401 Shore Rd, Ft Collins, CO 80524 USA
基金
美国国家卫生研究院;
关键词
Machine learning; Medical imaging; Imaging informatics; Medical data; Radiology; Medical image datasets; LUNG-CANCER; ERROR;
D O I
10.1007/s10278-017-9976-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
At the first annual Conference on Machine Intelligence in Medical Imaging (C-MIMI), held in September 2016, a conference session on medical image data and datasets for machine learning identified multiple issues. The common theme from attendees was that everyone participating in medical image evaluation with machine learning is data starved. There is an urgent need to find better ways to collect, annotate, and reuse medical imaging data. Unique domain issues with medical image datasets require further study, development, and dissemination of best practices and standards, and a coordinated effort among medical imaging domain experts, medical imaging informaticists, government and industry data scientists, and interested commercial, academic, and government entities. High-level attributes of reusable medical image datasets suitable to train, test, validate, verify, and regulate ML products should be better described. NIH and other government agencies should promote and, where applicable, enforce, access to medical image datasets. We should improve communication among medical imaging domain experts, medical imaging informaticists, academic clinical and basic science researchers, government and industry data scientists, and interested commercial entities.
引用
收藏
页码:392 / 399
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 2009, CVPR09
[2]  
[Anonymous], 2004, NIH DATA SHARING WOR
[3]   Radiologic errors and malpractice: A blurry distinction [J].
Berlin, Leonard .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2007, 189 (03) :517-522
[4]   Diagnostic Accuracy of 4 Commercially Available Semiautomatic Packages for Carotid Artery Stenosis Measurement on CTA [J].
Borst, J. ;
Marquering, H. A. ;
Kappelhof, M. ;
Zadi, T. ;
van Dijk, A. C. ;
Nederkoorn, P. J. ;
van den Berg, R. ;
van der Lugt, A. ;
Majoie, C. B. L. M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (10) :1978-1987
[5]   Error and discrepancy in radiology: inevitable or avoidable? [J].
Brady, Adrian P. .
INSIGHTS INTO IMAGING, 2017, 8 (01) :171-182
[6]  
Caballero Y., 2006, 8 INT S SYMB NUM ALG, P133, DOI [https://doi.org/10.1109/SYNASC.2006.6, DOI 10.1109/SYNASC.2006.6]
[7]   Missed lung cancer: when, where, and why? [J].
del Ciello, Annemilia ;
Franchi, Paola ;
Contegiacomo, Andrea ;
Cicchetti, Giuseppe ;
Bonomo, Lorenzo ;
Larici, Anna Rita .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2017, 23 (02) :118-126
[8]   Predicting sample size required for classification performance [J].
Figueroa, Rosa L. ;
Zeng-Treitler, Qing ;
Kandula, Sasikiran ;
Ngo, Long H. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2012, 12
[9]  
FORCE: Guiding Principles for Findable Accessible, FORCE11
[10]   Error in radiology [J].
Goddard, P ;
Leslie, A ;
Jones, A ;
Wakeley, C ;
Kabala, J .
BRITISH JOURNAL OF RADIOLOGY, 2001, 74 (886) :949-951