Power-law residence time distribution in the hyporheic zone of a 2nd-order mountain stream

被引:237
作者
Haggerty, R
Wondzell, SM
Johnson, MA
机构
[1] Oregon State Univ, Dept Geosci, Corvallis, OR 97331 USA
[2] Olympia Forestry Sci Lab, Pacific NW Res Stn, Olympia, WA 98512 USA
关键词
D O I
10.1029/2002GL014743
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
[1] We measured the hyporheic residence time distribution in a 2nd-order mountain stream at the H. J. Andrews Experimental Forest, Oregon, and found it to be a power-law over at least 1.5 orders of magnitude in time (1.5 hr to 3.5 d). The residence time distribution has a very long tail which scales as t(-1.28), and is poorly characterized by an exponential model. Because of the small power-law exponent, efforts to characterize the mean hyporheic residence time (t(s))in this system result in estimates that are scale invariant, increasing with the characteristic advection time within the stream channel (t(ad)). The distribution implies the hyporheic zone has a very large range of exchange timescales, with significant quantities of water and solutes stored over timescales very much longer than t(ad). The hyporheic zone in such streams may contribute to short-time fractal scaling in time series of solute concentrations observed in small-watershed studies.
引用
收藏
页码:18 / 1
页数:4
相关论文
共 18 条
[1]   SIMULATION OF SOLUTE TRANSPORT IN A MOUNTAIN POOL-AND-RIFFLE STREAM - A TRANSIENT STORAGE MODEL [J].
BENCALA, KE ;
WALTERS, RA .
WATER RESOURCES RESEARCH, 1983, 19 (03) :718-724
[2]   Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams [J].
Choi, J ;
Harvey, JW ;
Conklin, MH .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1511-1518
[3]   IMPORTANCE OF SURFACE-SUBSURFACE EXCHANGE IN STREAM ECOSYSTEMS - THE HYPORHEIC ZONE [J].
FINDLAY, S .
LIMNOLOGY AND OCEANOGRAPHY, 1995, 40 (01) :159-164
[4]   On the late-time behavior of tracer test breakthrough curves [J].
Haggerty, R ;
McKenna, SA ;
Meigs, LC .
WATER RESOURCES RESEARCH, 2000, 36 (12) :3467-3479
[5]  
Harvey J. W., 2000, Streams and Groundwaters, P3, DOI DOI 10.1016/B978-012389845-6/50002-8
[6]   Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange [J].
Harvey, JW ;
Wagner, BJ ;
Bencala, KE .
WATER RESOURCES RESEARCH, 1996, 32 (08) :2441-2451
[7]   DIFFUSION-MODELS FOR FRACTURED MEDIA [J].
HORNUNG, U ;
SHOWALTER, RE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 147 (01) :69-80
[8]  
Hornung U, 1997, HOMOGENIZATION POROU, P129
[9]  
KASAHARA T, 2000, THESIS OREGON STATE
[10]   Fractal stream chemistry and its implications for contaminant transport in catchments [J].
Kirchner, JW ;
Feng, XH ;
Neal, C .
NATURE, 2000, 403 (6769) :524-527