Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase

被引:177
作者
Hao, LH
Wang, H
Sunter, G
Bisaro, DM [1 ]
机构
[1] Ohio State Univ, Ctr Plant Biotechnol, Dept Mol Genet, Columbus, OH 43210 USA
[2] Ohio State Univ, Program Mol Cellular & Dev Biol, Columbus, OH 43210 USA
关键词
D O I
10.1105/tpc.009530
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Geminivirus AL2 and L2 proteins cause enhanced susceptibility, characterized primarily by an increase in viral infectivity, when expressed in transgenic plants. Here, we present genetic and biochemical evidence that enhanced susceptibility is attributable to the interaction of AL2 and L2 with SNF1 kinase, a global regulator of metabolism. Specifically, we show that AL2 and L2 inactivate SNF1 in vitro and in vivo. We further demonstrate that expression of an antisense SNF1 transgene in Nicotiana benthamiana plants causes enhanced susceptibility similar to that conditioned by the AL2 and L2 transgenes, whereas SNF1 overexpression leads to enhanced resistance. Transgenic plants expressing an AL2 protein that lacks a significant portion of the SNF1 interaction domain do not display enhanced susceptibility. Together, these observations suggest that the metabolic alterations mediated by SNF1 are a component of innate antiviral defenses and that SNF1 inactivation by AL2 and L2 is a counterdefensive measure. They also indicate that germiniviruses are able to modify host metabolism to their own advantage, and they provide a molecular link between metabolic status and inherent susceptibility to viral pathogens.
引用
收藏
页码:1034 / 1048
页数:15
相关论文
共 44 条
[1]   Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases [J].
Bhalerao, RP ;
Salchert, K ;
Bakó, L ;
Ökrész, L ;
Szabados, L ;
Muranaka, T ;
Machida, Y ;
Schell, J ;
Koncz, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :5322-5327
[2]  
Bisaro, 1996, DNA REPLICATION EUKA, P833
[3]   RETRACTED: Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana (Retracted article. See vol. 34, pg. 2595, 2015) [J].
Brigneti, G ;
Voinnet, O ;
Li, WX ;
Ji, LH ;
Ding, SW ;
Baulcombe, DC .
EMBO JOURNAL, 1998, 17 (22) :6739-6746
[4]   Glucose repression in yeast [J].
Carlson, M .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (02) :202-207
[5]   MUTATIONAL ANALYSIS OF THE SACCHAROMYCES-CEREVISIAE SNF1 PROTEIN-KINASE AND EVIDENCE FOR FUNCTIONAL INTERACTION WITH THE SNF4 PROTEIN [J].
CELENZA, JL ;
CARLSON, M .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5034-5044
[6]   A YEAST GENE THAT IS ESSENTIAL FOR RELEASE FROM GLUCOSE REPRESSION ENCODES A PROTEIN-KINASE [J].
CELENZA, JL ;
CARLSON, M .
SCIENCE, 1986, 233 (4769) :1175-1180
[7]   Two novel genes encoding SNF1-related protein kinases from Arabidopsis thaliana:: differential accumulation of AtSR1 and AtSR2 transcripts in response to cytokinins and sugars, and phosphorylation of sucrose synthase by AtSR2 [J].
Chikano, H ;
Ogawa, M ;
Ikeda, Y ;
Koizumi, N ;
Kusano, T ;
Sano, H .
MOLECULAR AND GENERAL GENETICS, 2001, 264 (05) :674-681
[8]   5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2A(c) [J].
Davies, SP ;
Helps, NR ;
Cohen, PTW ;
Hardie, DG .
FEBS LETTERS, 1995, 377 (03) :421-425
[9]   THE RETINOBLASTOMA PROTEIN ASSOCIATES WITH THE PROTEIN PHOSPHATASE TYPE-1 CATALYTIC SUBUNIT [J].
DURFEE, T ;
BECHERER, K ;
CHEN, PL ;
YEH, SH ;
YANG, YZ ;
KILBURN, AE ;
LEE, WH ;
ELLEDGE, SJ .
GENES & DEVELOPMENT, 1993, 7 (04) :555-569
[10]   SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase [J].
Farrás, R ;
Ferrando, A ;
Jásik, J ;
Kleinow, T ;
Ökrész, L ;
Tiburcio, A ;
Salchert, K ;
del Pozo, C ;
Schell, J ;
Koncz, C .
EMBO JOURNAL, 2001, 20 (11) :2742-2756