Machine learning for real-time single-trial EEG-analysis:: From brain-computer interfacing to mental state monitoring

被引:297
作者
Mueller, Klaus-Robert [1 ,2 ]
Tangermann, Michael [2 ]
Dornhege, Guido [2 ]
Krauledat, Matthias [1 ]
Curio, Gabriel [3 ]
Blankertz, Benjamin [1 ,2 ]
机构
[1] Tech Univ Berlin, D-10623 Berlin, Germany
[2] Fraunhofer FIRST IDA, D-12489 Berlin, Germany
[3] Univ Med Berlin, Charite, Dept Neurol, Berlin, Germany
关键词
EEG; sensorimotor rhythms; alpha-rhythm; single-trial EEG-analysis; real-time; machine learning; mental state monitoring;
D O I
10.1016/j.jneumeth.2007.09.022
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Machine learning methods are an excellent choice for compensating the high variability in EEG when analyzing single-trial data in real-time. This paper briefly reviews preprocessing and classification techniques for efficient EEG-based brain-computer interfacing (BCI) and mental state monitoring applications. More specifically, this paper gives an outline of the Berlin brain-computer interface (BBCI), which can be operated with minimal subject training. Also, spelling with the novel BBCI-based Hex-o-Spell text entry system, which gains communication speeds of 6-8 letters per minute, is discussed. Finally the results of a real-time arousal monitoring experiment are presented. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 90
页数:9
相关论文
共 45 条
  • [1] [Anonymous], 2006, CLIN NEUROPHYSIOL
  • [2] [Anonymous], THESIS U POTSDAM
  • [3] [Anonymous], 1998, Encyclopedia of Biostatistics
  • [4] [Anonymous], 2003, Procs. Advances in Neural Information Processing Systems (N IPS 02)
  • [5] BENNETT KP, 1992, OPTIMIZATION METHODS, V1, P23, DOI DOI 10.1080/10556789208805504
  • [6] The thought translation device (TTD) for completely paralyzed patients
    Birbaumer, N
    Kübler, A
    Ghanayim, N
    Hinterberger, T
    Perelmouter, J
    Kaiser, J
    Iversen, I
    Kotchoubey, B
    Neumann, N
    Flor, H
    [J]. IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, 2000, 8 (02): : 190 - 193
  • [7] Blankertz B, 2002, ADV NEUR IN, V14, P157
  • [8] Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis
    Blankertz, B
    Dornhege, G
    Schäfer, C
    Krepki, R
    Kohlmorgen, J
    Müller, KR
    Kunzmann, V
    Losch, F
    Curio, G
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2003, 11 (02) : 127 - 131
  • [9] Blankertz B., 2005, 1 FIRST
  • [10] Blankertz B, 2007, LECT NOTES COMPUT SC, V4555, P759