Resource efficient plasmon-based 2D-photovoltaics with reflective support

被引:25
作者
Hagglund, Carl [1 ]
Apell, S. Peter [1 ]
机构
[1] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden
来源
OPTICS EXPRESS | 2010年 / 18卷 / 19期
关键词
SOLAR-CELLS; OPTICAL-CONSTANTS;
D O I
10.1364/OE.18.00A343
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For ultrathin (similar to 10 nm) nanocomposite films of plasmonic materials and semiconductors, the absorptance of normal incident light is typically limited to about 50%. However, through addition of a non-absorbing spacer with a highly reflective backside to such films, close to 100% absorptance can be achieved at a targeted wavelength. Here, a simple analytic model useful in the long wavelength limit is presented. It shows that the spectral response can largely be characterized in terms of two wavelengths, associated with the absorber layer itself and the reflective support, respectively. These parameters influence both absorptance peak position and shape. The model is employed to optimize the system towards broadband solar energy conversion, with the spectrally integrated plasmon induced semiconductor absorptance as a figure of merit. Geometries optimized in this regard are then evaluated in full finite element calculations which demonstrate conversion efficiencies of up to 64% of the Shockley-Queisser limit. This is achieved using only the equivalence of about 10 nanometer composite material, comprising Ag and a thin film solar cell layer of a-Si, CuInSe2 or the organic semiconductor MDMO-PPV. A potential for very resource efficient solar energy conversion based on plasmonics is thus demonstrated. (C) 2010 Optical Society of America
引用
收藏
页码:A343 / A356
页数:14
相关论文
共 31 条
[1]   Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2 -: art. no. 075203 [J].
Alonso, MI ;
Wakita, K ;
Pascual, J ;
Garriga, M ;
Yamamoto, N .
PHYSICAL REVIEW B, 2001, 63 (07)
[2]   Epsilon-near-zero metamaterials and electromagnetic sources:: Tailoring the radiation phase pattern [J].
Alu, Andrea ;
Silveirinha, Mario G. ;
Salandrino, Alessandro ;
Engheta, Nader .
PHYSICAL REVIEW B, 2007, 75 (15)
[3]   REQUIREMENTS FOR IDEAL PERFORMANCE OF PHOTOCHEMICAL AND PHOTOVOLTAIC SOLAR-ENERGY CONVERTERS [J].
ARCHER, MD ;
BOLTON, JR .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (21) :8028-8036
[4]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[5]  
Bohren C F, 2004, ABSORPTION SCATTERIN
[6]  
Catchpole KR, 2008, OPT EXPRESS, V16, P21793, DOI 10.1364/OE.16.021793
[7]   Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach [J].
Coronado, EA ;
Schatz, GC .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (07) :3926-3934
[8]   The Ag dielectric function in plasmonic metamaterials [J].
Drachev, Vladimir P. ;
Chettiar, Uday K. ;
Kildishev, Alexander V. ;
Yuan, Hsiao-Kuan ;
Cai, Wenshan ;
Shalaev, Vladimir M. .
OPTICS EXPRESS, 2008, 16 (02) :1186-1195
[9]   Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors [J].
Driessen, E. F. C. ;
Braakman, F. R. ;
Reiger, E. M. ;
Dorenbos, S. N. ;
Zwiller, V. ;
de Dood, M. J. A. .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2009, 47 (01)
[10]   Solar Cell Efficiency Tables (Version 34) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm .
PROGRESS IN PHOTOVOLTAICS, 2009, 17 (05) :320-326