The impact of sampling frequency and sampling times on chamber-based measurements of N2O emissions from fertilized soils

被引:129
作者
Smith, KA [1 ]
Dobbie, KE [1 ]
机构
[1] Univ Edinburgh, Inst Ecol & Resource Management, Edinburgh EH9 3JU, Midlothian, Scotland
关键词
automation; chamber method; emissions; nitrous oxide; sampling frequency; soil;
D O I
10.1046/j.1354-1013.2001.00450.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
An automated closed-chamber system was developed to measure N2O fluxes in the field. It was deployed at two N-fertilized grassland sites in two successive years, together with replicated manual chambers, to investigate the spatial and temporal variability in fluxes, and the likely impact of sampling frequency on cumulative flux values. The automated system provided flux data at 8-h intervals, while manual sampling was conducted at intervals of 3-7 days. The autochambers showed fluctuations in emissions not detected by manual sampling. However, integrated flux values based on the more intensive measurements were on average no more than 14% greater than those based on data from the autochambers that were obtained at the same time as manual sampling. This difference was not significant and well within the spatial variability determined with manual chambers. If daily sampling intervals were used immediately after fertilization, the agreement was closer still, increasing the confidence that can be placed in manual procedures. Diurnal variations in temperature and flux were small, and results from sampling at mid-day were not significantly different from those based on early morning or evening sampling. Where diurnal fluctuations in temperature and flux are likely to be much larger, the autochamber/sampler system could prove very useful to quantify the effect.
引用
收藏
页码:933 / 945
页数:13
相关论文
共 35 条
[1]   MEASUREMENT OF N2O EMISSION FROM A FERTILIZED GRASSLAND - AN ANALYSIS OF SPATIAL VARIABILITY [J].
AMBUS, P ;
CHRISTENSEN, S .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1994, 99 (D8) :16549-16555
[2]   Automated near-continuous measurement of carbon dioxide and nitrous oxide fluxes from soil [J].
Ambus, P ;
Robertson, GP .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1998, 62 (02) :394-400
[3]   AUTOMATED GAS-CHROMATOGRAPHIC ANALYSIS SYSTEM FOR MICROMETEOROLOGICAL MEASUREMENTS OF TRACE GAS FLUXES [J].
ARAH, JRM ;
CRICHTON, IJ ;
SMITH, KA ;
CLAYTON, H ;
SKIBA, U .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1994, 99 (D8) :16593-16598
[4]   Direct emission of nitrous oxide from agricultural soils [J].
Bouwman, AF .
NUTRIENT CYCLING IN AGROECOSYSTEMS, 1996, 46 (01) :53-70
[5]   EFFECTS OF LIMING AND NITROGEN-FERTILIZATION ON EMISSIONS OF CO2 AND N2O FROM A TEMPORATE FOREST [J].
BRUMME, R ;
BEESE, F .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D12) :12851-12858
[6]  
Buchan G. D., 1991, Soil analysis: physical methods., P551
[7]   Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions [J].
ButterbachBahl, K ;
Gasche, R ;
Breuer, L ;
Papen, H .
NUTRIENT CYCLING IN AGROECOSYSTEMS, 1997, 48 (1-2) :79-90
[8]   Nitrous oxide emissions from fertilised grassland: A 2-year study of the effects of N fertiliser form and environmental conditions [J].
Clayton, H ;
McTaggart, IP ;
Parker, J ;
Swan, L ;
Smith, KA .
BIOLOGY AND FERTILITY OF SOILS, 1997, 25 (03) :252-260
[9]   MEASUREMENT OF NITROUS-OXIDE EMISSIONS FROM FERTILIZED GRASSLAND USING CLOSED CHAMBERS [J].
CLAYTON, H ;
ARAH, JRM ;
SMITH, KA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1994, 99 (D8) :16599-16607
[10]   Intensive field measurements of nitrous oxide emissions from a tropical agricultural soil [J].
Crill, PM ;
Keller, M ;
Weitz, A ;
Grauel, B ;
Veldkamp, E .
GLOBAL BIOGEOCHEMICAL CYCLES, 2000, 14 (01) :85-95