Liquid phase behavior of ionic liquids with alcohols: Experimental studies and modeling

被引:131
作者
Crosthwaite, JM [1 ]
Muldoon, MJ [1 ]
Aki, SNVK [1 ]
Maginn, EJ [1 ]
Brennecke, JF [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
关键词
D O I
10.1021/jp060201a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionic liquids (ILs) have been suggested as potential "green" solvents to replace volatile organic solvents in reaction and separation processes due to their negligible vapor pressure. To develop ILs for these applications, it is important to gain a fundamental understanding of the factors that control the phase behavior of ionic liquids with other liquids. In this work, we continue our study of the effect of chemical and structural factors on the phase behavior of ionic liquids with alcohols, focusing on pyridinium ILs for comparison to imidazolium ILs from our previous studies. The impact of different alcohol and IL characteristics, including alcohol chain length, cation alkyl chain length, anion, different substituent groups on the pyridinium cation, and type of cation ( pyridinium vs imidazolium) will be discussed. In general, the same type of behavior is observed for pyridinium and imidazolium ILs, with all systems studied exhibiting upper critical solution temperature behavior. The impacts of alcohol chain length, cation chain length, and anion, are the same for pyridinium ILs as those observed previously for imidazolium ILs. However, the effect of cation type on the phase behavior is dependent on the strength of the cation-anion interaction. Additionally, all systems from this study and our previous work for imidazolium ILs were modeled using the nonrandom two-liquid (NRTL) equation using two different approaches for determining the adjustable parameters. For all systems, the NRTL equation with binary interaction parameters with a linear temperature dependence provided a good fit of the experimental data.
引用
收藏
页码:9354 / 9361
页数:8
相关论文
共 18 条
[1]  
Anthony JL, 2005, J PHYS CHEM B, V109, P6366, DOI [10.1021/jp046404l, 10.1021/jp0464041]
[2]   Hydrophobic, highly conductive ambient-temperature molten salts [J].
Bonhote, P ;
Dias, AP ;
Papageorgiou, N ;
Kalyanasundaram, K ;
Gratzel, M .
INORGANIC CHEMISTRY, 1996, 35 (05) :1168-1178
[3]   Why is CO2 so soluble in imidazolium-based ionic liquids? [J].
Cadena, C ;
Anthony, JL ;
Shah, JK ;
Morrow, TI ;
Brennecke, JF ;
Maginn, EJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (16) :5300-5308
[4]  
Cammarata L, 2001, PHYS CHEM CHEM PHYS, V3, P5192, DOI 10.1039/b106900d
[5]   Liquid phase behavior of imidazolium-based ionic liquids with alcohols: effect of hydrogen bonding and non-polar interactions [J].
Crosthwaite, JM ;
Aki, SNVK ;
Maginn, EJ ;
Brennecke, JF .
FLUID PHASE EQUILIBRIA, 2005, 228 :303-309
[6]   Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids [J].
Crosthwaite, JM ;
Muldoon, MJ ;
Dixon, JK ;
Anderson, JL ;
Brennecke, JF .
JOURNAL OF CHEMICAL THERMODYNAMICS, 2005, 37 (06) :559-568
[7]   Liquid phase behavior of imidazolium-based ionic liquids with alcohols [J].
Crosthwaite, JM ;
Aki, SNVK ;
Maginn, EJ ;
Brennecke, JF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (16) :5113-5119
[8]   Solvent-solute interactions in ionic liquids [J].
Crowhurst, L ;
Mawdsley, PR ;
Perez-Arlandis, JM ;
Salter, PA ;
Welton, T .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (13) :2790-2794
[9]   Solubility of 1-dodecyl-3-methylimidazolium chloride in alcohols (C2-C12) [J].
Domanska, U ;
Bogel-Lukasik, E ;
Bogel-Lukasik, R .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (08) :1858-1863
[10]   Solubility of ionic liquid [emim][PF6] in alcohols [J].
Domanska, U ;
Marciniak, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (07) :2376-2382