Aging Studies of Pt/Glassy Carbon Model Electrocatalysts

被引:15
作者
Gu, Y. [1 ]
St-Pierre, J. [1 ]
Joly, A. [3 ]
Goeke, R. [2 ]
Datye, A. [2 ]
Atanassov, P. [2 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA
[2] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA
[3] Ecole Super Ingenieurs Poitiers, F-86022 Poitiers, France
基金
美国国家科学基金会;
关键词
ageing; atomic force microscopy; carbon; catalysts; dissolving; electrochemical electrodes; nanostructured materials; nanotechnology; oxidation; platinum; polymer blends; proton exchange membrane fuel cells; voltammetry (chemical analysis); CELL CATALYST DEGRADATION; CO MONOLAYER OXIDATION; MEMBRANE FUEL-CELLS; PLATINUM DISSOLUTION; OXYGEN REDUCTION; PT/C CATALYSTS; NANOPARTICLES; TEMPERATURE; ELECTRODES; SIZE;
D O I
10.1149/1.3077608
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A model Pt catalyst nanoarray on planar glassy carbon (GC) was synthesized using a diblock copolymer synthesis route and subjected to a potential cycle aging procedure. Preliminary experimental data show initial and degradation behavior similar to that of proton exchange membrane fuel cell gas diffusion electrodes. Commonalities include similar cyclic voltammetry and CO stripping voltammetry features, Pt active surface area temporal changes, and Pt particle size effect on CO oxidation peak potential. Furthermore, atomic force microscopy provides evidence for both Pt dissolution and Pt nanoparticle migration/coalescence as aging mechanisms. Experimental data obtained with Pt model catalysts also revealed that Pt dissolution may be the rate-determining step under certain operating conditions. Thus, the beneficial use of Pt/GC model electrocatalysts as surrogates for commercial gas diffusion electrodes is validated.
引用
收藏
页码:B485 / B492
页数:8
相关论文
共 50 条
[1]   Electrochemical and UHV characterisation of stepped Pt{100} electrode surfaces [J].
Al-Akl, A ;
Attard, G ;
Price, R ;
Timothy, B .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (16) :3261-3268
[2]   Study on the formation of Pt/C catalysts by non-oxidized active carbon support and a sulfur-based reducing agent [J].
Antolini, E ;
Cardellini, F ;
Giacometti, E ;
Squadrito, G .
JOURNAL OF MATERIALS SCIENCE, 2002, 37 (01) :133-139
[3]   Mechanisms of catalyst deactivation [J].
Bartholomew, CH .
APPLIED CATALYSIS A-GENERAL, 2001, 212 (1-2) :17-60
[4]  
BARTHOLOMEW CH, 1993, CATALYSIS, V10
[5]  
BARTHOLOMEW CH, 2002, ENCY CATALYSIS, V2, P182
[6]   Temperature effects on PEM fuel cells Pt/C catalyst degradation [J].
Bi, Wu ;
Fuller, Thomas. F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :B215-B221
[7]   The effect of humidity and oxygen partial pressure on degradation of Pt/C catalyst in PEM fuel cell [J].
Bi, Wu ;
Sun, Qunhui ;
Deng, Win ;
Fuller, Thomas F. .
ELECTROCHIMICA ACTA, 2009, 54 (06) :1826-1833
[8]   But will it last until the shutdown? Deciphering catalyst decay [J].
Birtill, JJ .
CATALYSIS TODAY, 2003, 81 (04) :531-545
[9]   Measurement and modeling of the kinetics of catalyst decay in fixed beds: The Eurokin survey [J].
Birtill, John J. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (08) :2392-2398
[10]   Scientific aspects of polymer electrolyte fuel cell durability and degradation [J].
Borup, Rod ;
Meyers, Jeremy ;
Pivovar, Bryan ;
Kim, Yu Seung ;
Mukundan, Rangachary ;
Garland, Nancy ;
Myers, Deborah ;
Wilson, Mahlon ;
Garzon, Fernando ;
Wood, David ;
Zelenay, Piotr ;
More, Karren ;
Stroh, Ken ;
Zawodzinski, Tom ;
Boncella, James ;
McGrath, James E. ;
Inaba, Minoru ;
Miyatake, Kenji ;
Hori, Michio ;
Ota, Kenichiro ;
Ogumi, Zempachi ;
Miyata, Seizo ;
Nishikata, Atsushi ;
Siroma, Zyun ;
Uchimoto, Yoshiharu ;
Yasuda, Kazuaki ;
Kimijima, Ken-ichi ;
Iwashita, Norio .
CHEMICAL REVIEWS, 2007, 107 (10) :3904-3951