Molecular Interaction of α-Conotoxin RgIA with the Rat α9α10 Nicotinic Acetylcholine Receptor

被引:43
作者
Azam, Layla [1 ]
Papakyriakou, Athanasios [4 ]
Zouridakis, Marios [5 ]
Giastas, Petros [5 ]
Tzartos, Socrates J. [5 ]
McIntosh, J. Michael [1 ,2 ,3 ]
机构
[1] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Psychiat, Salt Lake City, UT 84112 USA
[3] George E Wahlen Vet Affair Med Ctr, Salt Lake City, UT USA
[4] Natl Ctr Sci Res Demokritos, Athens, Greece
[5] Hellenic Pasteur Inst, Dept Neurobiol, Athens, Greece
基金
美国国家卫生研究院;
关键词
ROOT GANGLION NEURONS; CYS-LOOP RECEPTORS; HAIR-CELLS; SUBUNIT INTERFACES; CHOLINERGIC-RECEPTOR; CRYSTAL-STRUCTURES; SYNAPTIC FUNCTION; EPSILON-SUBUNIT; CHRONIC PAIN; SELECTIVITY;
D O I
10.1124/mol.114.096511
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The alpha 9 alpha 10 nicotinic acetylcholine receptor (nAChR) was first identified in the auditory system, where it mediates synaptic transmission between efferent olivocochlear cholinergic fibers and cochlea hair cells. This receptor gained further attention due to its potential role in chronic pain and breast and lung cancers. We previously showed that alpha-conotoxin (alpha-CTx) RgIA, one of the few alpha 9 alpha 10 selective ligands identified to date, is 300-fold less potent on human versus rat alpha 9 alpha 10 nAChR. This species difference was conferred by only one residue in the (-), rather than (+), binding region of the alpha 9 subunit. In light of this unexpected discovery, we sought to determine other interacting residues with alpha-CTx RgIA. A previous molecular modeling study, based on the structure of the homologous molluscan acetylcholine-binding protein, predicted that RgIA interacts with three residues on the alpha 9(+) face and two residues on the alpha 10(-) face of the alpha 9 alpha 10 nAChR. However, mutations of these residues had little or no effect on toxin block of the alpha 9 alpha 10 nAChR. In contrast, mutations of homologous residues in the opposing nAChR subunits (alpha 10 E197, P200 and alpha 9 T61, D121) resulted in 19- to 1700-fold loss of toxin activity. Based on the crystal structure of the extracellular domain (ECD) of human alpha 9 nAChR, we modeled the rat alpha 9 alpha 10 ECD and its complexes with alpha-CTx RgIA and acetylcholine. Our data support the interaction of alpha-CTx RgIA at the alpha 10/alpha 9 rather than the alpha 9/alpha 10 nAChR subunit interface, and may facilitate the development of selective ligands with therapeutic potential.
引用
收藏
页码:855 / 864
页数:10
相关论文
共 58 条
  • [1] Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function
    Albuquerque, Edson X.
    Pereira, Edna F. R.
    Alkondon, Manickavasagom
    Rogers, Scott W.
    [J]. PHYSIOLOGICAL REVIEWS, 2009, 89 (01) : 73 - 120
  • [2] Amino acid residues that confer high selectivity of the α6 nicotinic acetylcholine receptor subunit to α-conotoxin MII[S4A, E11A, L15A]
    Azam, Layla
    Yoshikami, Doju
    McIntosh, J. Michael
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (17) : 11625 - 11632
  • [3] Molecular basis for the differential sensitivity of rat and human α9α10 nAChRs to α-conotoxin RgIA
    Azam, Layla
    McIntosh, J. Michael
    [J]. JOURNAL OF NEUROCHEMISTRY, 2012, 122 (06) : 1137 - 1144
  • [4] A TRANSIENT CALCIUM-DEPENDENT CHLORIDE CURRENT IN THE IMMATURE XENOPUS OOCYTE
    BARISH, ME
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1983, 342 (SEP): : 309 - 325
  • [5] New insights into the structural bases of activation of Cys-loop receptors
    Bouzat, Cecilia
    [J]. JOURNAL OF PHYSIOLOGY-PARIS, 2012, 106 (1-2) : 23 - 33
  • [6] A new alpha-conotoxin which targets alpha 3 beta 2 nicotinic acetylcholine receptors
    Cartier, GE
    Yoshikami, DJ
    Gray, WR
    Luo, SQ
    Olivera, BM
    McIntosh, JM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (13) : 7522 - 7528
  • [7] The Amber biomolecular simulation programs
    Case, DA
    Cheatham, TE
    Darden, T
    Gohlke, H
    Luo, R
    Merz, KM
    Onufriev, A
    Simmerling, C
    Wang, B
    Woods, RJ
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) : 1668 - 1688
  • [8] Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures
    Celie, PHN
    van Rossum-Fikkert, SE
    van Dijk, WJ
    Brejc, K
    Smit, AB
    Sixma, TK
    [J]. NEURON, 2004, 41 (06) : 907 - 914
  • [9] Functional Characterization of α9-Containing Cholinergic Nicotinic Receptors in the Rat Adrenal Medulla: Implication in Stress-Induced Functional Plasticity
    Colomer, Claude
    Olivos-Ore, Luis A.
    Vincent, Anne
    McIntosh, J. Michael
    Artalejo, Antonio R.
    Guerineau, Nathalie C.
    [J]. JOURNAL OF NEUROSCIENCE, 2010, 30 (19) : 6732 - 6742
  • [10] Del Bufalo A, 2014, CURR PHARM DESIGN, V20, P6042