Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly

被引:127
作者
Onishi, Megumi [1 ]
Liou, Gunn-Guang [1 ]
Buchberger, Johannes R. [1 ]
Walz, Thomas [1 ]
Moazed, Danesh [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1016/j.molcel.2007.12.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Silent chromatin domains in Saccharomyces cerevisiae represent examples of epigenetically heritable chromatin. The formation of these domains involves the recruitment of the SIR complex, composed of Sir2, Sir3, and Sir4, followed by iterative cycles of NAD-dependent histone deacetylation and spreading of SIR complexes over adjacent chromatin domains. We show here that the conserved bromo-adjacent homology (BAH) domain of Sir3 is a nucleosome- and histone-tail-binding domain and that its binding to nucleosomes is regulated by residues in the N terminus of histone H4 and the globular domain of histone H3 on the exposed surface of the nucleosome. Furthermore, using a partially purified system containing nucleosomes, the three Sir proteins, and NAD, we observe the formation of SIR-nucleosome filaments with a diameter of less than 20 nm. Together, these observations suggest that the SIR complex associates with an extended chromatin fiber through interactions with two different regions in the nucleosome.
引用
收藏
页码:1015 / 1028
页数:14
相关论文
共 75 条
[1]  
[Anonymous], [No title captured]
[2]   MODIFIERS OF POSITION EFFECT ARE SHARED BETWEEN TELOMERIC AND SILENT MATING-TYPE LOCI IN SACCHAROMYCES-CEREVISIAE [J].
APARICIO, OM ;
BILLINGTON, BL ;
GOTTSCHLING, DE .
CELL, 1991, 66 (06) :1279-1287
[3]   THE MULTIDOMAIN STRUCTURE OF ORC1P REVEALS SIMILARITY TO REGULATORS OF DNA-REPLICATION AND TRANSCRIPTIONAL SILENCING [J].
BELL, SP ;
MITCHELL, J ;
LEBER, J ;
KOBAYASHI, R ;
STILLMAN, B .
CELL, 1995, 83 (04) :563-568
[4]   Methylation of histone H3 Lys 4 in coding regions of active genes [J].
Bernstein, BE ;
Humphrey, EL ;
Erlich, RL ;
Schneider, R ;
Bouman, P ;
Liu, JS ;
Kouzarides, T ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8695-8700
[5]   DNA in transcriptionally silent chromatin assumes a distinct topology that is sensitive to cell cycle progression [J].
Bi, X ;
Broach, JR .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (12) :7077-7087
[6]   CHARACTERIZATION OF A SILENCER IN YEAST - A DNA-SEQUENCE WITH PROPERTIES OPPOSITE TO THOSE OF A TRANSCRIPTIONAL ENHANCER [J].
BRAND, AH ;
BREEDEN, L ;
ABRAHAM, J ;
STERNGLANZ, R ;
NASMYTH, K .
CELL, 1985, 41 (01) :41-48
[7]   TRANSCRIPTIONAL SILENCING IN YEAST IS ASSOCIATED WITH REDUCED NUCLEOSOME ACETYLATION [J].
BRAUNSTEIN, M ;
ROSE, AB ;
HOLMES, SG ;
ALLIS, CD ;
BROACH, JR .
GENES & DEVELOPMENT, 1993, 7 (04) :592-604
[8]   Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae [J].
Briggs, SD ;
Bryk, M ;
Strahl, BD ;
Cheung, WL ;
Davie, JK ;
Dent, SYR ;
Winston, F ;
Allis, CD .
GENES & DEVELOPMENT, 2001, 15 (24) :3286-3295
[9]   Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains [J].
Cairns, BR ;
Schlichter, A ;
Erdjument-Bromage, H ;
Tempst, P ;
Kornberg, RD ;
Winston, F .
MOLECULAR CELL, 1999, 4 (05) :715-723
[10]   The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation [J].
Callebaut, I ;
Courvalin, JC ;
Mornon, JP .
FEBS LETTERS, 1999, 446 (01) :189-193