The nitration of protein tyrosine residues represents an important post-translational modification during development, oxidative stress, and biological aging. To rationalize any physiological changes with such modifications, the actual protein targets of nitration must be identified by proteomic methods. While several studies have used proteomics to screen for 3-nitrotyrosine-containing proteins in vivo, most of these studies have failed to prove nitration unambiguously through the actual localization of 3-nitrotyrosine to specific sequences by mass spectrometry. In this paper we have applied sequential solution isoelectric focusing and SDS-PAGE for the proteomic characterization of specific 3-nitrotyrosine-containing sequences of nitrated target proteins in vivo using nanoelectrospray ionization-tandem mass spectrometry. Specifically, we analyzed proteins from the skeletal muscle of 34-month-old Fisher 344/Brown Norway F1 hybrid rats, a well accepted animal model for biological aging. We identified the 3-nitrotyrosine-containing sequences of 11 proteins, including cytosolic creatine kinase, tropomyosin 1, glyceraldehyde-3-phosphate dehydrogenase, myosin light chain, aldolase A, pyruvate kinase, glycogen phosphorylase, actinin, gamma-actin, ryanodine receptor 3, and neurogenic locus notch homolog. For creatine kinase and neurogenic locus notch homolog, two 3-nitrotyrosine-containing sequences were identified, i.e. at positions 14 and 20 for creatine kinase and at positions 1175 and 1205 for the neurogenic locus notch homolog. The selectivity of the in vivo nitration of creatine kinase at Tyr(14) and Tyr(20) does not correspond to the product selectivity in vitro, where exclusively Tyr(82) was nitrated when creatine kinase was exposed to peroxynitrite. The latter experiments demonstrate that the in vitro exposure of an isolated protein to peroxynitrite may not always be a good model to mimic protein nitration in vivo.