Mixing associated with sills in a canyon on the midocean ridge flank

被引:76
作者
Thurnherr, AM
St Laurent, LC
Speer, KG
Toole, JM
Ledwell, JR
机构
[1] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[2] Florida State Univ, Dept Oceanog, Tallahassee, FL 32306 USA
[3] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
关键词
D O I
10.1175/JPO2773.1
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
To close the global overturning circulation, the production and sinking of dense water at high latitudes must be balanced elsewhere by buoyancy gain and upward vertical motion. Hydrographic and microstructure observations from the Brazil Basin in the South Atlantic Ocean indicate that most of the abyssal mixing there takes place on the topographically rough flank of the midocean ridge. In previous studies it has been suggested that the high level of abyssal mixing observed on the ridge flank is primarily caused by breaking internal waves forced by tidal currents. Here, the results from a detailed analysis of velocity, hydrographic, and microstructure data from a ridge-flank canyon are presented. Two-year-long current-meter records indicate that within the canyon there is a significant along-axial mean flow down the density gradient toward the ridge crest. Five hundred meters above the canyon floor the kinetic energy in the subinertial band exceeds that associated with the semidiurnal tides by approximately a factor of 2. The mean dissipation of kinetic energy inside the canyon exceeds that above the ridge-flank topography by approximately a factor of 5. The largest dissipation values were observed downstream of a narrow, 1000-m-high sill that extends across the full width of the canyon. Along the entire canyon, there is a strong association between the presence of sills and along-axial density gradients, while there is no similar association between the presence of depressions and density gradients. Together, these observations suggest that sill-related mixing contributes at least as much to the diapycnal buoyancy flux in the canyon as tidally forced internal-wave breaking, which is not expected to be associated preferentially with sills. While only approximate to 15% of the interfacial area between Antarctic Bottom Water and North Atlantic Deep Water in the Brazil Basin lie inside canyons, the available data suggest that approximately one-half of the diapycnal buoyancy fluxes take place there. In comparison, the region above the ridge-flank topography accounts for about one-third of the buoyancy fluxes. The apparent importance of sill-related processes for mixing in ridge-flank canyons is therefore of global significance, especially considering that such canyons occur on average every 50 km along 2/3 of the global midocean ridge system, and that sills partially block the canyon axes every few tens of kilometers.
引用
收藏
页码:1370 / 1381
页数:12
相关论文
共 37 条
[1]  
Cannon G. A., 1972, Journal of Physical Oceanography, V2, P281, DOI 10.1175/1520-0485(1972)002<0281:WEOCOI>2.0.CO
[2]  
2
[3]  
Carter GS, 2002, J PHYS OCEANOGR, V32, P3145, DOI 10.1175/1520-0485(2002)032<3145:IVMNTH>2.0.CO
[4]  
2
[5]   QUANTITATIVE-ANALYSIS OF ABYSSAL HILLS IN THE ATLANTIC-OCEAN - A CORRELATION BETWEEN INFERRED CRUSTAL THICKNESS AND EXTENSIONAL FAULTING [J].
GOFF, JA ;
TUCHOLKE, BE ;
LIN, J ;
JAROSLOW, GE ;
KLEINROCK, MC .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1995, 100 (B11) :22509-22522
[6]   SUBMARINE CANYONS - INTERNAL WAVE TRAPS [J].
GORDON, RL ;
MARSHALL, NF .
GEOPHYSICAL RESEARCH LETTERS, 1976, 3 (10) :622-624
[7]  
HELFRICH KR, 1995, J PHYS OCEANOGR, V25, P359, DOI 10.1175/1520-0485(1995)025<0359:TDTLHE>2.0.CO
[8]  
2
[9]  
HICKEY BM, 1995, FLOW TOPOGRAPHY INTE, P95
[10]  
Hogg N, 1982, J MAR RES, V40, P231