A simple scaling model for extreme rainfall

被引:125
作者
Menabde, M
Seed, A
Pegram, G
机构
[1] Univ Auckland, Dept Phys, Auckland, New Zealand
[2] Univ Natal, Dept Civil Engn, ZA-4041 Durban, South Africa
[3] Bur Meteorol, Cooperat Res Ctr Catchment Hydrol, Melbourne, Vic 3001, Australia
关键词
D O I
10.1029/1998WR900012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The simple scaling hypothesis is applied to the intensity-duration-frequency (IDF) description of rainfall. It is shown that the cumulative distribution function for the annual maximum series of mean rainfall intensity has a simple scaling property over the range 30 min to 24 hours and in some instances to 48 hours. This behavior is demonstrated through an examination of the scaling properties of the moments and the scaling of the parameters of an extreme value distribution fitted to the data. A simple analytical formula for the IDF relationship is proposed, which embodies the scaling behavior. Once the scaling parameter has been obtained for a gauge or set of gauges in a region, this formula enables the calculation of rainfall amounts, of a chosen return period and duration shorter than a day, directly from the information obtained from the analysis of daily data.
引用
收藏
页码:335 / 339
页数:5
相关论文
共 13 条
[1]  
ADAMSON PT, 1981, TR102 DEP WAT AFF FO
[2]  
Bell F.C., 1969, Journal of the Hydraulics Division, V95, P311, DOI [10.1061/JYCEAJ.0001942, DOI 10.1061/JYCEAJ.0001942]
[3]   Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation [J].
Burlando, P ;
Rosso, R .
JOURNAL OF HYDROLOGY, 1996, 187 (1-2) :45-64
[4]  
Chow T.V., 1988, APPL HYDROLOGY
[5]   RECENT ADVANCES IN RAINFALL MODELING, ESTIMATION, AND FORECASTING [J].
FOUFOULA-GEORGIOU, E ;
KRAJEWSKI, W .
REVIEWS OF GEOPHYSICS, 1995, 33 :1125-1137
[6]   MULTISCALING PROPERTIES OF SPATIAL RAINFALL AND RIVER FLOW DISTRIBUTIONS [J].
GUPTA, VK ;
WAYMIRE, E .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D3) :1999-2009
[7]   A mathematical framework for studying rainfall intensity-duration-frequency relationships [J].
Koutsoyiannis, D ;
Kozonis, D ;
Manetas, A .
JOURNAL OF HYDROLOGY, 1998, 206 (1-2) :118-135
[8]   GENERALIZED SCALE-INVARIANCE IN THE ATMOSPHERE AND FRACTAL MODELS OF RAIN [J].
LOVEJOY, S ;
SCHERTZER, D .
WATER RESOURCES RESEARCH, 1985, 21 (08) :1233-1250
[9]  
Mandelbrot B.B., 1983, The fractal geometry of nature
[10]   Self-similar random fields and rainfall simulation [J].
Menabde, M ;
Seed, A ;
Harris, D ;
Austin, G .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D12) :13509-13515